J
CAPI

==="= (M)
Power Systems o
IBM CAPI SNAP framework
Version 1.0
How to debug an issue in SNAP environment.
The Guide describes how to understand the way code is handled and how to debug an issue in SNAP
environment.
Overview
Let’s try and find all the cases you can have through the different steps of SNAP
We will use the Nimbix cloud environment to illustrate the issues and their resolutions but this can be
easily translated to any other environment.
This document has been built using snap git release tag v1.3.2. It can certainly work also for new
releases.
This document will succesfully go through the following items:
- understand how SNAP architecture helps you debugging the code
- get an overview of main messages (INFO, WARNING, ERRORS,...) generated by SNAP commands
February 21th, 2017 SNAP Framework built on Power™ CAPI technology Pagel

CAPI g
6

Contents
OVEBIVIBW ..ttt ettt ettt st e s et e s b et e s s b et e s s s b e e e s s abe e e s s b be e e s s eabae e s ssabaeessnraees 1
1. Understanding and Debugging a USer COde.............coooiiiiiiiiiiii i e e 4
11 SNAP architecture CONCEPLS OVEIVIEW ...ccuviiiiiiiiiie ittt ettt sbte e e srree e s searee e s ssneaeeesanes 4
1.2 Debugging the C application with the function, both physically separated.cccccevveeeinnnnenn. 5
1.3 Adapting the “function to accelerate” to become a “software action”ccccccvvveveivieeeccinennnn. 6
1.4 Adapting the application tO SNAPooii e e e e e e e e e are e e e asaeeeeas 7
1.5 Executing the application with the “software action”:cccceiiiiiii e, 8
1.6 Debugging the application with the “software action”:............cccccceiiiiiiii i, 9
1.7 Adapting the “function to accelerate” to a “hardware action”cccccoeeeiveiieievciee e, 11
1.8 Debugging the “hardware action” in a standalone mode..........cccceeeeeiiiiecciee e, 13
1.9 Debugging the “hardware action” with the application..............c..cccoocoiiiiiiiiiiic e, 15
1.10 Debugging the “hardware action” with the application in the real FPGA...........ccccovveeiriieeennns 18
2. Error, warning and information messages generated by commandsccccceeeeiiiiiicien e, 19
2.1 “make snap_config” commandccoouiiiiiiiiiieii e 19
2.1.1 message : PSLSE_ROOT path not defined...........cooeciieiicciiie e 19
2.1.2 INFO message : Cloud user flow is skipping PSL_DCP checK........ccccoeeeeciviieccieeeecieeeeen. 19
2.1.3 INFO message : PSL_DCP path not definedccouviiieiieiiieii e, 20
2.1.4 INFO message : outdated design checkpoint........c.ccooveiiiiiicciei e, 20
2.1 Error when executing the appliCation...........c.eoioiieii i e 21
2.1.1 Segmentation fault : Program terminated with signal 11, Segmentation fault 21
2.1.2 Bus error : Program terminated with Bus error — no core dumped..........ccccoceeeeevveeeennneen. 22
2.2 “make” command from ~snap/actions/hls_example/Awc.ccccoceeivieiiieneenieenieeireeireenn 24
2.2.1 ERROR message : make error while compiling with HLS the hw actioncccccveeennneen. 24
2.2.2 ERROR message : error: array is too large : uint8 t padding[108.. ... 24
2.3 “make Model” COMMANoouiiiiiiieiece e et 27
2.3.1 ERROR message : make error while compiling PSLSE model........cccceevieiiiiciee i, 27
2.3.1 ERROR mMessage : CasCaded @ITOrS.......uuuiiiieeeeieiciiiieeee e e e e ectiteeeee e e e e snbraeeseeeeeessnnssneeeeseeanns 27
2.4 “PUN_SIM” COMMANGooiiiiieiee e e et e et e et e e s te e e beeesnteeenteeesnreeeseeesnseean 28
2.4.1 ERROR message : Failed to attach action.........cccccvieeiiciiei i 28
2.4.2 ERROR mMessage : TIMer EXPIEdueiiiiiiieiiiiiieeeeitee e eettee e eette e e estte e e e satae e s e evae e e e snaeeeeeaneeas 28
2.5 “Make iMage” CoOMMANG.........cooiiiiie e e e e rtre e e e sabae e e s eabeeeeennreeas 30
2.5.1 WARNING message : TIMING FAILED, but may be OK for lab use........cccceeecvieeeecrireennnneen. 30

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 2

LY

J
CAPI v

e ==="=)
Power Systems

ANNEX 1 : View Of the FPGA AESIZN....uiiiiiiiiiiieiiiie e ctee ettt ettt erte e s et e e e e aa e e e ssataeeessnsaeeeennssaeesnnnsneeaas 32

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 3

CAP!

@
1. Understanding and Debuggingausercode

1.1 SNAP architecture concepts overview

SNAP framework has been built to ease the porting of existing functions. This means that a few steps
have been defined to easily locate and identify a functional issue in the code.

For all the following explanations, we will use the hls_helloworld code as an example
(https://github.com/open-power/snap/tree/master/actions/hls helloworld)

Remember that by the fact that we add a FPGA and new associated resources all unknown from the
system, SNAP adds 2 things :

- A switch in the application so that it can call the “software action” meaning your function
execueted on CPU or the “hardware action” so called because your function is executed on a
FPGA.

- Reference to the new different resources that are now useable by the application : Card DDR,
Card NVMe, ethernet,...

Application on
Server

b -l) | snap_helloworld —i /tmpit1 -0 Ampit2 (-mode=cpu) |
=) | snap_helloworld -i fmp/t1 -0 imp#2-mode=fpga |

= Change C code to implement:
- Aswitch o ex action on CPU or on FPGA
- Away to access new resources

D
hello wortd. | love this ner HELLO WORLD. | LOVE THIS NI
(experience with snap EXPERIENCE WITH SNAP

Files location are as follow:

SNAP
+ actions
+ hls_helloworld
+sw (cpu)

- snap_helloworld.c

- action_lowercase.c
+hw (fpga)

- action_uppercase.cpp
+include

- action_changecase.h

February 21th, 2017

€ application
€ software action

€ hardware action

€ common header

SNAP Framework built on Power™ CAPI technology

Page 4

https://github.com/open-power/snap/tree/master/actions/hls_helloworld

J
CAPI

A
o/

1.2 Debugging the C application with the function, both physically separated.

The first step is to debug the application calling the “function to accelerate” in a completely standalone
environnement, meaning without any reference to SNAP, CAPI or any hardware stuff.

Use your standard compiler (gcc,..) and debuggers (kdb,...) as usual. Implementing printf and verbosity
management but also a self-tested code can also help in the following steps to ensure changes that will
be applied never breaks the code functionalities.

Command :

$ gcc helloworld.c

‘ = At this stage, you know that your whole C code is functionally correct.

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page5

CAP!

Power Systems 2

1.3 Adapting the “function to accelerate” to become a “software action”

The “function to accelerate” is going to be moved to a “software action” file which will contain some
additional code so that the application can execute this software action within the SNAP environment.

In the software action file (~snap/actions/hls_helloworld/sw/action_lowercase.c), you will notice that
the additional code implements a switch, coded into the function action:

/* This is the switch call when software action is called */
/* NO CHANGE TO BE APPLIED BELOW OTHER THAN ADAPTING THE ACTION TYPE NAME &V
static struct snap sim action action = {../]..}

This function action calls the action_main in which the processing of the data is done. Here is where the
code of your function to accelerate will be.

/* Main program of the software action */
static int action_main(struct snap sim action *action,
void *Jjob, unsigned int job len) {../..}

One more change to do is the way to pass the arguments. We don’t get them from a function call, but
through a unique structure js as follow:

struct helloworld job *js = (struct helloworld job *)job;
// get the parameters from the structure
len = js->in.size;
dst = (char *) (unsigned long)Jjs->out.addr;
src (char *) (unsigned long) js->in.addr;

You will notice that assigning the js->in.addr address to src implicitely fills the src array of chars with
the data from system memory. This is important to understand for the next step.

helloworld_job is defined by the user in the common header file since it will be used by both the
hardware and the software action : (~snap/actions/hls_helloworld/include/action_changecase.h).

/* Data structure used to exchange information between action and application */
/* Size limit is 108 Bytes */
typedef struct helloworld job {
struct snap_addr in; /* input data */
struct snap addr out; /* offset table */
} helloworld job_t;

To be complete, snap_addr type is defined in ~snap/software/include/snap_types.h

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 6

CAP!

1.4 Adapting the application to SNAP

Power Systems

7
o

The application (~snap/actions/hls_helloworld/sw/snap_helloworld.c) calling the “function to

accelerate

” (Il

@ Fill input data into host server memory

C/ C++ code used

- Evaluate input file size > size = _file_size(input);
- Allocate memory area (64Bytes aligned) [Ibuff= shap_malloc(size)
- Read data from input file and fill ibuff with > rc=__file_read(input, ibuff, size);
data from input file
@ Prepare host server memory to store the
results:
- Evaluate output file size (same than input) .
- Allocate memory area (64 Bytes aligned) [* obuff = snap_malloc(size)

@ Prepare parameters to be written in MMIO
registers:
- type_in = SNAP_ADDRTYPE_HOST_DRAM;
- addr_in = (unsigned long) ibuff; -

- type_out= SNAP_ADDRTYPE_HOST_DRAM;
addr_out= (unsigned long) obuff;

- Assign the structure mjob containing all

parameters we just filled to the job cjob >

@ Allocate the card that will be used

—— > card = snap_card_alloc_dev (device,

SNAP_VENDOR_ID_IBM, SNAP_DEVICE_ID_SNAP);

@ Allocate the action that will be used on the ——»
allocated card

@ Call the action. This will:
- Write all registers to the action (MMIO)
- Start the action

- Wait for completion (interrupt, MMIO polling,

action = snap_attach_action (card,
HELLOWORLD_ACTION_TYPE, action_irq, timeout);

» rc = snap_action_sync_execute_job(action, &cjob, timeout);

or timeout)
- Read all registers from the action (MMIO)

software” or “hardware” action) uses a template which will successively call as follow:

> This starts the execution of the software
or hardware function//action code

@ Read output data from the host server
memory and write them to output file
Read data from host server (obuf) and

3 " ——— rc = __file_write(output, obuff, size);
write data to output file
Detach action —* snap_detach_action(action);
Disallocate the card —1* snap_card_free(card);

Free the dynamic allocation of buffers

—> __free(obuff);

__free(ibuff);

February 21th, 2017

SNAP Framework built on Power™ CAPI technology

Page 7

CAP!

1.5 Executing the application with the “software action”:

From the ~snap/actions/hls_helloworld/sw/ directory, compile the code by doing

$ make

[CC] snap_helloworld.o
[CC] snap_helloworld

Then create a file /tmp/t1 with a mix of upper and lower cases as follow : “Hello World. | love SNAP”

Then execute:

$ SNAP CONFIG=CPU ./snap_helloworld -i/tmp/tl -o/tmp/t2
reading input data 25 bytes from /tmp/tl

PARAMETERS:
input:
output:
type in:
addr_in:
type out:
addr out:

size in/out:

prepare helloworld job of 32 bytes size
writing output data 0x63a000 25 bytes to /tmp/t2
SUCCESS
SNAP helloworld took 5 usec

/tmp/tl

/tmp/t2

0 HOST DRAM
0000000000639000
0 HOST DRAM
000000000063a000
00000019

Check the result that should be in /tmp/t2 as expected = “hello world. i love snap”

February 21th, 2017

SNAP Framework built on Power™ CAPI technology Page 8

CAP!

)

Power Systems N

1.6 Debugging the application with the “software action”:

1) If the execution of the application crashes, then try and generate a core dump, then use gdb to
locate the line causing the crash:

$ ulimit -c unlimited enable the core dump generation

€«
$./snap_helloworld € rerun the application to generate the core dump
$ gdb ./snap_helloworld core.xxx € debug the core dump
€ Jlocate the line in the application which created

the segmentation fault

(gdb) where

2) Enter some printfto get more information about your values.

3) Enable the verbose mode -vv if any, which can help getting more information from the code

4) Uncommenting __hexdump instructions in the code can help getting the data related to a
memory area.

5) To display the exchanges of the MMIO registers between the application and the software
action, you can set the SNAP_TRACE variable to a value between 0x1 and OxF:

Code Prefix
0x1 General libsnap trace D
0x2 Enable register read/write trace R
0x4 Enable simulation specific trace S
0x8 Enable action traces A

As an example, sw mmio write32 (0xf66050, 108, cOfebabe) a=0x603720 means that this
is a software emulated (sw_mmio) transfer writing the value cOfebabe to address 0x08
(1 before 08 is the offset added by the snap manager to address this action)

$ SNAP TRACE=0xF SNAP CONFIG=CPU ./snap helloworld -i/tmp/tl -o/tmp/t2
reading input data 25 bytes from /tmp/tl
v
addr out: 0000000000£67000
size in/out: 00000019
D snap map funcs: Mapping action type 10141008
find action: Searching action type 10141008
snap_map_ funcs: Action found 0x603720.
sw_attach action (0x£f66050, 10141008 65537 60)
prepare helloworld job of 32 bytes size
win size: 32 wout size: 0 mmio in: 12 mmio out: 8
snap_action sync execute job: PASS PARAMETERS to Short Action 0 Seqg: 0
sw_mmio write32 (0xf66050, 100, 100) a=0x603720
mmio write32 (0x£f66050, 100, 100)
sw mmio write32(0x£f66050, 104, 0) a=0x603720
mmio write32(0xf66050, 104, 0)
sw_mmio write32(0xf66050, 108, cOfebabe) a=0x603720
mmio write32 (0xf66050, 108, cOfebabe)

vl vih-Nvlvilvl

Then writing 1 to @0 will start the software action which is shown by the call to action_main as
below:

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page9

~

sw mmio write32 (0x£f66050, 12c, 230000) a=0x603720
mmio write32 (0xf66050, 12c, 230000)
snap_action start: START Action 0x10141008 Flags 0
sw mmio write32(0xf66050, 0, 1) a=0x603720
starting action!!
action main(0x603720, 0x603748, 112) type in=0 type out=0 jobsize 32 bytes
copy 0xf66000 to O0xf67000 25 bytes
sw_mmio read32 (0xf66050, 0, 4) rc=0
sw mmio read32 (0xf66050, 184, 102) rc=0

D
A
D
D
D
A
A
D
D

~

= At this stage, you know that your application works correctly with the software action

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 10

7
CAPI

==="= M)
Power Systems -z
1.7 Adapting the “function to accelerate” to a “hardware action”

The “function to accelerate” is going to be moved now to a “hardware action” file which will contain
some specific code so that the application can execute this hardware action within the SNAP
environment. The application code will remain unchanged.

In the hardware action file (~snap/actions/hls_helloworld/hw/action_uppercase.c), the main function
called is hls_action which will define the access to the different ressources that will be used in the
hardware action:

//=== TOP LEVEL MODULE ————— ==
void hls_action (snap membus t *din_gmem,.../...) {
i/

// Host Memory AXI Interface - CANNOT BE COMMENTED - NO CHANGE BELOW
ftpragma HLS INTERFACE m axi port=din_gmem bundle=host mem offset=slave depth=512 ..
#pragma HLS INTERFACE m axi port=dout_gmem bundle=host mem offset=slave depth=512 ..

// DDR memory Interface - CAN BE COMMENTED IF UNUSED
//#pragma HLS INTERFACE m axi port=d _ddrmem bundle=card mem0 offset=slave depth=512

This function calls the process_action in which the processing of the data is done. Here is where the
code of your function to accelerate will be.

static int process_action(snap membus t *din_gmem, snap membus_t *dout_ gmem,
action reg *act regq)

{../.}

@(= act_reg->Data.in.addr >> ADDR_RIGHT_SHIFT; .

o_idx = act_reg->Data.out.addr >> ADDR_RIGHT_SHIFT; *—— Getand align the input_data_address, input_data
size = act_reg->Data.in.size; _address and size to access (MMIO)

q—.

Read data from input_data address directly in host
memory server (din_gmem)

memepy((char®) text, din_gmem + i_idx, size);

for (i = 0; i < sizeof(text); i++) .
if (text[i] >= 'a’ && text[i] <='Z) Process the data (uppercase conversion)

text[i] = text[i] - (‘a'- 'A"); !
memcpy(dout_gmem + o_idx, (char?) text, size); Write data to output_data address directly in host
. ®

memory server (dout_gmem)

Fill the return code /

The end of the code sends to the application an ‘

(t_reg->00ntrol.Retc =SNAP_RETC_SUCCESS;

interrupt (if set)

As for the software action, the way to pass the arguments is through the unique structure

/* byte address received need to be aligned with port width */
i idx = act reg->Data.in.addr >> ADDR RIGHT SHIFT;

o_idx = act_reg->Data.out.addr >> ADDR RIGHT_SHIFT;

size = act reg->Data.in.size;

The implicit read of the memory here needs to be specified since the memory can be the host memory
server (din_gmem) or any other resources from the FPGA such as the card DDR (d_ddrmem), or others:

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 11

-/
CAPI ,

= EN
Power Systems

memcpy ((char*) text, din _gmem + i idx, BPERDW);

The definition of the structure of arguments is common with the software action meaning defined in the
common header file (~snap/actions/hls_helloworld/include/action_changecase.h)

/* Data structure used to exchange information between action and application */
/* Size limit is 108 Bytes */
typedef struct helloworld job {
struct snap addr in; /* input data */
struct snap addr out; /* offset table */
} helloworld job_ t;

As a reminder, snap_addr type is defined in ~snap/software/include/snap_types.h

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 12

J
CAPI

P
(&

1.8 Debugging the “hardware action” in a standalone mode

You may have notices that C files in hardware are all “.cpp” files and not “.c” files. This is to better work
with HLS since more libraries are supported if files are all cpp files. The code can stay standard C code.

It is highly recommended to create a very simple testbench code located at the bottom of the hardware
action which can test the hardware action without the application. There are 2 goals for that:

- Isolate the code to localize an issue quicker
- Use a powerful C debugger within the Vivado HLS GUI

We will see later that this testbench is also extremely useful to optimize performances of the code.

In all examples that are provided in snap github, you will find this code between the #ifdef NO_SYNTH
and #endif lines. For example, for the action_uppercase.cpp file, you will find the following:

#ifdef NO SYNTH

int main (void)

{
static snap membus t din gmem[MEMORY LINES];
action reg act reg;
action RO config reg Action Config;

.
act reg.Data.in.addr = 0;
act reg.Data.in.size = 64;
act _reg.Data.in.type = SNAP ADDRTYPE HOST DRAM;
it o
hls _action(din gmem, dout gmem, &act reg, &Action Config);
if (act _reg.Control.Retc == SNAP RETC FAILURE) {
fprintf (stderr, " ==> RETURN CODE FAILURE <==\n");
return 1;
}
/)
#endif

Then from the ~snap/actions/hls_helloworld/hw directory, call the Vivado HLS tool
(= important : make sure you run almost once a make in this hw directory so that scripts are updated!)

$ vivado_hls

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 13

Power Systems

mesnet

snap | actions

e @
his_helloworld |hw‘ Create Folder
|size | Madified A || =

@ Recently Used

mesnet
B Desktop
File System

User Guide

Qpen Project | _;| ‘ ¢ |fpga framework
|Places | | Name
& scarch

——
l' & cancel ‘

Then run a simulation enabling or not the C debugger. You get in the console the results of your

displays.

Specific to HLS 2017.4 GUI : if the simulation doesn’t want to start (“missing main()... message”), enter

the Project Settings and just press the Ok button and start simulation again.

v [m =8 il

i - (O CSimulation Dislog
<RI ===

" C Simulation

typtions.

[[Launch Debugger|

[] Bultg Only

[] Clean Biig
ptimizing Cohgpile
Opti Cogpil

Compiler | gcc

Input Arguments

8
®
n®

Da not shaw this dialog box again,

ST TR

INFO: [SIM ZL1-2] ##ewttririniirs CSII start #Hem,

INFO: [SIM 211-4] CSIM will launch GCC as the compiler.
Compiling ../../../. . faction_uppercase.cpp in debug mode
Generating csim, exe

ACTION_TYPE: 10141008
RELEASE_LEVEL: 00000822
RETC: efnf

Discovery : calling action to get config data

Input is ! CCCCCCOCCOCCCCCOCCCCCCCCCCCCCCCCoCCCCCCCoCCorCCCCoCCCCCrCCrcCoe
Action call
Output is @ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCorCCCCCCCooCoroce

== ACTION TYPE = 10141008 - RELEASE_LEVEL = 00000022 <=

INFD: [SIM 211-1] CSim done with @ errors.
INFO: [SIM 211-3] #kekkkerkisr (ST finish thseesese:

Finished C simulation,

= At this stage, you know that the C code of your hardware action is functionally correct

February 21th, 2017

SNAP Framework built on Power™ CAPI technology

Page 14

CAP!

£ Ea
Power Systems N

1.9 Debugging the “hardware action” with the application

Now that the application works ok with the software action, which means that the SNAP switch
implementation works ok, and that the hardware action works ok in a standalone mode, which means
that your C code is functionally correct. This doesn’t confirm yet that the hardware implementation of
your hardware action works ok.

Lets go a step further and test the application with the hardware implementation of the hardware
action. We will need at this stage a model of the Power8, a model of a PSL and model of the hardware
action as if it was executed in the FPGA. Let’s build all that by executing :

from the ~snap directory, call:

$ make model

Then call the simulator and execute your code

$ cd hardware/sim
$./run_sim
This will open a new window in which you will be able to work as if you were on the real hardware

meaning a real Power8, and a real FPGA containing a real PSL.

Let’s first run the SNAP discovery mode

setting Vivado=2016.4 IES=15.10.s19 SIMULATOR=irun
IES LIBS found in /afs/bb/proj/fpga/framework/ies libs/viv2016.4/iesl15.10.s19
$ snap maint -vv
INFO:Connecting to host 'xxx.com' port 16384
SNAP on N250S Card, NVME disabled, 0 MB SRAM available.
SNAP FPGA Release: v1.3.0 Distance: 2 GIT: Oxeffac8c7
/e
[unlock action] Exit found Action: 0x10141008
0 Max AT: 1 Found AT: 0x10141008 --> Assign Short AT: 0

Short | Action Type | Level \
—————— e eee e e s s e s s e fesessss= o=
0 0x10141008 0x00000022 IBM HLS Hello World
INFO:detach response from from pslse

$

Then execute the application in default mode (FPGA mode is default)
$ SNAP_CONFIG=FPGA snap_helloworld -i/tmp/tl -o/tmp/t2 or

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 15

CAP!

)

Power Systems =

$ snap helloworld -i/tmp/tl -o/tmp/t2
reading input data 25 bytes from /tmp/tl

PARAMETERS:
input: /tmp/tl
output: /tmp/t2
type in: 0 HOST DRAM
addr in: 000000000220a000
type out: 0 HOST DRAM
addr out: 000000000220b000

size in/out: 00000019
INFO:Connecting to host 'hdclv0l6.boeblingen.de.ibm.com' port 16384
prepare helloworld job of 32 bytes size
writing output data 0x220b000 25 bytes to /tmp/t2
SUCCESS
SNAP helloworld took 5137118 usec (€ this is a simulation elapsed time)
INFO:detach response from from pslse

$

Don’t take care to the simulation time which doesn’t reflect at all the real time but a simulation time
which is absolutely not relevant.

During the execution of the simulator, you can see in the first window, the PSL commands that flows
to/from the simulator as if they were directly coming from the Power8 server.

am

257966000: Command Valid: ccom=0x0

258074000: Response tag=0xfl code=0x00 credits=1
262390000: Command Valid: ccom=0xa00

262402000: Buffer Write tag=0x00

262410000: Buffer Write tag=0x00

262490000: Response tag=0x00 code=0x00 credits=1
263930000: Command Valid: ccom=0xabb

263942000: Buffer Write tag=0x20

263950000: Buffer Write tag=0x20

264018000: Response tag=0x20 code=0x00 credits=1
i/

As for the execution in pure C mode, you can also switch back to the software action and/or add the
Trace (see 0 and 0)

$ SNAP_CONFIG=CPU ./snap_helloworld -i/tmp/tl -o/tmp/t2
$ SNAP_TRACE=0xF ./snap_helloworld -i/tmp/tl -o/tmp/t2

$ SNAP_TRACE=0xF SNAP_CONFIG=CPU ./snap helloworld -i/tmp/tl -o/tmp/t2
If the level of detail is not sufficient to debug your issue, you may need to see values of all variables at
the same time.

Depending on the simulator you use , you can get all waveforms. Use the following command typed in a
standard terminal (not the simulator window). This can be done during the simulation execution.

=>» Using xsim (default Xilinx Vivado simulator)

$ xsim —-gui xsim/latest/top.wdb € xsim simulator

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 16

iy
(&

Power Systems
Simulation Result - top.wdb
Sstopes 20O x =02 X Buntited1r x
A= P E G 3
L Dot e
o o search: size B matches) | m ame
o @ a0 psl_accel(ps) Narme [v
b= 3 snap_care_i snap_corers... | §= Patternsize[31.0] 1
20 action_w action_wrap. O Textsize[12:0]
-9 his_action_0 his_action(h -2 Textsize_rast_fu_1709_pl[
4 hls_action etri_reg_s_axi_U his_action_ct
$=1 hls_action_host_mem_m... his_action_h
4 hls_action_card_memo_.. hls_action_c
-9 orp_process_action_fu_2... process_acti..
@ TextBuffer ¥ Ul process_acti.
o= Tem_U Rrocess_acti..
@ Pattern_U process_acti
o= grp_KMP_search_fu_2... KMP_search(
Q grp_Naive_search_fu.. MNaive_searc
@ grp_mibus to_word L. misUs_ta_wo.
0 orp_read_single_ward... readl_single_
@ orp_read_burst_of_da... read_burst_
@ orp_mbus _to_word_fu... mbus_ta_wo.
@@ grp_memcopy_table_fu__. memcopy_ta
o= axi_clock_canverter._i axi_clock_co...
>3 diclrs soiram_bankl clolr3sdlram
5= @ clolr3 _climm clair3_dlimm
L@ abl glol
tart

edit SSNAP_ROOT/hardware/sim/xsaet.tcl to modify waveform properties.

=>» Using irun (ModelSim Simulator)

irun simulato.

Waveform1 - SimVision

[ligrgfit Yiew Exglore Fomat Windows Help

G| 0o ¥ DD X | R b B $ 4+ h

Search Names: | Signal] = i & Search Times: | Valuev| =i, 8,

FI‘ Timea~| =[44,302 s - dm . 2 Time: 5§
X Baseline =0

5] Cursorv=44,302ns
scope: | @ All Available Data £| Cursor-Baseline == 44,302

top Cursor &+

=
o action_w
£ hls_action_0

-3 grp_memcopy_table_fu_z45

52 grp_process_action_fu_228
Arp_KIMP_search_fy_2a7
arp_mbus_to_werd_1_fu_303
arp_mbus_to_word_fu_333
3 gmp_Naive_search_fu_235

Finet:|String] =l iy 6

Shaw contents:|In the selector below

@ PatternSize

o] | I | B |8 e a2 Fitter: [ftemsize |

Click and add to waveform area

edit SSNAP_ROOT/hardware/sim/ncaet.tcl to increase the allowed waveform file size and modify other
waveform properties.

= At this stage, you know that the application works ok with the hardware implementation of
the hardware action

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 17

CAPI
7

1.10 Debugging the “hardware action” with the application in the real FPGA

As soon as the application and the hardware action works ok on the simulator, then you can build the
image and move it to the Powers8.

Once the image is downloaded into the FPGA, you will be able to run exactly the same commands as the
one you did in simulation, using SNAP_CONFIG=CPU and/or SNAP_TRACE=0xF. You should have exactly
the same behavior than the one you get in simulation. It is reall key to understand that all issues that
you see when executing on a FPGA should be seen in simulation if you run exactly the same testcase.

If you face some functional issues when you are in real hardware, you can also add some probes in the
FPGA to have a view of the values you need. This is what we call inserting Xilinx ILA probes. You will
need to enable the ILA debug selecting it in the make snap_config command

ard Type (Nallatech 2505 with 4GE DDR4 SDRAM, NVMe and Xilinx KUBO FPGA)

ction Type (HLS HellowWorld) ---=

imulator (xsim) ---=

Ak Advanced Options: ik
Q reate Factory Image

[] "loud build (enabling Partial Reconfiguration)

All instructions are then described in the snap hardware README =»https://github.com/open-
power/snap/blob/master/hardware/README.md#hardware-debug-with-ila-cores

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 18

https://github.com/open-power/snap/blob/master/hardware/README.md#hardware-debug-with-ila-cores
https://github.com/open-power/snap/blob/master/hardware/README.md#hardware-debug-with-ila-cores

CAP!

17~
p=

2. Error, warning and information messages generated by commands
2.1 “make snap_config” command

2.1.1 message : PSLSE_ROOT path not defined
Command :

make snap config

Message :

The following environment variables need to get defined:
PSLSE ROOT

Please dit snap env.sh and add the correct values

SNAP config done

Explanation:
You may have run the make snap_config command without having set the PSLSE_ROOT variable

Specific NIMBIX Solution:
Copy the snap_env.sh predefined in the root into ~snap directory

cp ../snap.env.sh .

make snap config

Other environment Solution:

vi snap.env.sh
> PSLSE _ROOT=~/pslse € use the path to where pslse has been installed
make snap config

2.1.2 INFO message : Cloud user flow is skipping PSL_DCP check
Command :

make snap config

Message :

INFO ### Cloud user flow is skipping PSL DCP check
SNAP config done

Explanation:
This message appears if you have selected the Cloud build option in the menu. This is recommended if

you want to build an image and use Nimbix capabilities to execute your code on a FPGA

S — SO

[I"‘ Cloud build (enabling Partial Reconfiguration)
[*] Cloud user flow
[*] Build bitstream file

Specific NIMBIX Solution:
Nothing to change if this is what you expect to do

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 19

CAP!

5\
p=

2.1.3 INFO message : PSL_DCP path not defined
Command :

make snap config

Message :

INFO ### for image build the environment variable PSL DCP must point to the CAPI
PSL Check point (b _route design.dcp)

SNAP config done

Explanation:

No path has been specified to the PSL_DCP variable in file snap_env.sh.

This means that user can do a simulation but will not be able to build an image (make image will fail).
This setting can be done later when the image generation will be needed.

Specific NIMBIX Solution:

cp ../snap.env.sh .

make snap config

Other environment Solution:

vi snap.env.sh
> PSL DCP=~/xxx/b route design.dcp € use the path to where file is installed

make snap config

2.1.4 INFO message : outdated design checkpoint
Command :

make snap config

Message :

INFO ### PSL DCP for N250S is pointing to an outdated design checkpoint, image
built will not be allowed

Explanation:
The PSL image used by your environment is too old. To prevent issues on the FPGA, we will not allow the
build.

Solution:

Download in your environment (or ask Nimbix administrator if on it) to get the latest CAPI SNAP Design
Kit (b_route_design.dcp) from IBM/OpenPower website
=> see https://github.com/open-power/snap/blob/master/README.md#dependencies

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 20

https://github.com/open-power/snap/blob/master/README.md#dependencies

CAP!

= A
Power Systems N

2.1 Error when executing the application

2.1.1 Segmentation fault : Program terminated with signal 11, Segmentation fault
Command :

./snap_helloworld -i/tmp/tl -o/tmp/t2

Message :

Core was generated by ‘./snap helloworld -i/tmp/tl -o/tmp/t2’.
program terminated with signal 11, Segmentation fault.
#0 0x00002baaBb33c484 in strcpy ssse3 (a from /1ib64/libc.so.6

Explanation:
A segmentation fault may be due to a memory allocation issue. This means that you have written to

some area you are not authorized to. It’s often because you have allocated an aread with a certain size
and wrote beyond this size.

Solution:

To correct this issue, You first need to have a core dump file generated by the application. If this was not
generated, then execute the following and re-run the application. A file core.xxx will be generated.

$ ulimit -c unlimited € cnable the core dump generation

$./snap_helloworld -i/tmp/tl -o/tmp/t2 € rerun the application

Install the gdb debugger tool, if not done yet =» sudo apt-get install gdb

Use gdb debugger tool to locate the line causing the crash:

$ gdb ./snap_helloworld core.xxx € debug the core dump
(gdb) where € locate the line in the application which

created the segmentation fault

This will give you a backtrace with all the hierarchy of the calls and will locate precisely the line that has
generated the segmentation fault.

The line #0 is the cause (often a library or system call), which was called by #1 which can gives you the
precise location of the issue. Reading the calls history to the main() may help you understanding the
whole context in which this call was done.

(This is trace below was generated on a different example than snap_helloworld)
(gdb) backtrace
0x00002baa8b33c484 in _ strcpy_ssse3 () from /1ib64/1libc.so.6
#1 0x0000000000401f6f in search_files_and_calculate_score (action=0x603780, job=<value optimized out>,
job_len=<value optimized out>) at action_software.c:86
score_terms (action=0x603780, job=<value optimized out>, job_len=<value optimized out>)
at action_software.c:114

action_main (action=0x603780, job=<value optimized out>, job_len=<value optimized out>)

at action_software.c:177

0x00002baa8abdf57c in sw_mmio_write32 (card=0xdd5050, offs=0, data=1) at snap.c:1078

0x00002baa8abe0740 in snap_action_sync_execute_job (action=0xdd5050, cjob=0x7ffeal224e40, timeout_sec=600)
at snap.c:900

0x000000000040180f in main (argc=<value optimized out>, argv=<value optimized out>)

at snap _docclassify.c:346

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 21

2.1.2 Bus error : Program terminated with Bus error — no core dumped
Command :
./snap_hashjoin -Cl -vv -t2500

Message :

i/
{ .name = "Glory", .animal = "Gepard", .age=83 } /* 10. */ }; /* table3 idx=11
ReturnCode: 102
HashJoin took 1121 usec
Bus error

$

Explanation:
An error has occurred but did not generate a core dump.

Solution:

You first need to have a core dump file generated by the application.

$ ulimit -c unlimited € cnable the core dump generation

$./snap_hashjoin -Cl -vv -t2500 € rerun the application

New Message :

it
{ .name = "Glory", .animal = "Gepard", .age=83 } /* 10. */ }; /* table3 idx=11
ReturnCode: 102
HashJoin took 1121 usec
Bus error (core dumped)
S 1s
action hashjoin.c core Makefile README.md ...

Use gdb debugger tool to locate the line causing the crash:

$ gdb ./snap helloworld core.xxx € debug the core dump
(gdb) where € locate the line in the application which

created the segmentation fault

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 22

CAP!

I 1

Power Systems 2

Core was generated by °./snap hashjoin -Cl -vv -t2500 '.

Program terminated with signal SIGBUS, Bus error.

#0 0x00003f£ff92a3875c in raise (sig=<optimized out>) at
../sysdeps/unix/sysv/linux/pt-raise.c:3535 ../sysdeps/unix/sysv/linux/pt-
raise.c: No such file or directory.

(gdb) where

#0 0x00003fff92a3875c in raise (sig=<optimized out>) at
../sysdeps/unix/sysv/linux/pt-raise.c:35

#1 0x00003£f£f£928150d8 in cxl mmio read32 () from /usr/lib/powerpcé64le-linux-—
gnu/libcxl.so.1

#2 0x00003fff92a8380c in hw_snap mmio_read32 (card=0x1003dcb0010, offset=0,
data=<optimized out>) at snap.c:272

#3 0x00003f£ff92a83984 in hw_detach action (action=0x1003dcb0010) at snap.c:576
#4 0x00003fff92a8424c in snap_detach_action (action=0x1003dcb0010) at snap.c:680
#5 0x0000000010001960 in main (argc=<optimized out>, argv=<optimized out>) at
snap_hashjoin.c:374

(gdb)

You have here the hierachy of the calls which droves to your issue
Main > snap_detach_action > hw_detach_action > hw_snap_mmio_read32 > cxl_mmio_read32

Looking into the code at line 374 of snap_hash_join.c file, you can locate which call is bad.

365 t2 entries -= t2 tocopy;

366 }

367 snap_detach action((void*)action);

368 gettimeofday (&etime, NULL) ;

369

370 fprintf (stderr, "ReturnCode: %x\n"

371 "HashJoin took %11d usec\n", cjob.retc,
372 (long long) timediff usec(&etime, &stime));
373

374 snap_detach_action(action) ;

375 snap card free (card);

376 exit (exit code);

Here you can easily see the reason of the issue. The snap_detach_action has already been done on line
367 so that the snap_detach_action of line 374 is not expected and generates an issue.
Removing one of them get rid of the issue.

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 23

CAP!

)
(&

2.2 “make” command from ~snap/actions/hls_example/hw

2.2.1 ERROR message : make error while compiling with HLS the hw action
Command :

make

Message :

Checking for reserved MMIO area during HLS synthesis
/home/.../snap//actions/hls.mk:69: recipe for target 'check' failed

Explanation:

To ensure that your MMIO mapping will be correct and in sync with the software, the MMIO structure
action_reg is restricted to 108 bytes at maximum. A script in the hls.mk controls this and will stop the
HLS compilation if this rule is forced.

Solution:

To correct this issue, please check that the structure Data defined in your_action_job_t is defined
correctly. For example in helloworld, here is where it is defined

SACTION ROOT/hw/action uppercase.H
typedef struct {

CONTROL Control; /* 16 bytes */

helloworld job_t Data; /* up to 108 bytes */

uint8 t padding[SNAP HLS JOBSIZE - sizeof (helloworld job t)];
} action reg;

SACTION ROOT/include/action changecase.h
typedef struct helloworld job {
struct snap addr in; /* input data - 16B */
struct snap addr out; /* offset table - 16B*/
} helloworld job t;

cd ../include && vi action changecase.h

cd ../hw && make

2.2.2 ERROR message : error: array is too large : uint8 t padding[108..
Command :

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 24

-/
CAPI

Power Systems -z

Message :

In file included from action uppercase.cpp:27:
./action uppercase.H:39:18: error: array is too large (18446744073709551564 elements)

1 error generated.

ERROR: [HLS 200-70] Compilation errors found:

Pragma processor failed: In file included from action uppercase.cpp:1:

In file included from action uppercase.cpp:27:

./action uppercase.H:39:18: error: array is too large (18446744073709551564 elements)
uint8 t padding[108 - sizeof (helloworld job t)];

1 error generated.

Explanation:
The definition of the structure of data exchanged between the application and the action is defined on

~snap/actions/hls_helloworld/hw/action_uppercase.H

// This is generic. Just adapt names for a new action
// CONTROL is defined and handled by SNAP
// helloworld job t is user defined in hls helloworld/include/action change case.h
typedef struct {
CONTROL Control; /* 16 bytes */
helloworld job_t Data; /* up to 108 bytes */
uint8 t padding[SNAP HLS JOBSIZE - sizeof (helloworld job t)];
} action reg;

helloworld_job_t is constrained to a structure up to 108 Bytes. If it is smaller or equal to 108 Bytes, then
an automatic padding will be done. If it is larger, then a script will stop the compilation so that we don’t
go over this constraint.

The definition of the structure of arguments is common with the software action meaning defined in the
common header file (~snap/actions/hls_helloworld/include/action_changecase.h)

/* Data structure used to exchange information between action and application */
/* Size limit is 108 Bytes */
typedef struct helloworld job {
struct snap addr in; /* input data */
struct snap addr out; /* offset table */
} helloworld job_t;

As a reminder, snap_addr type is a 16 Bytes structure defined in ~snap/software/include/snap_types.h.

typedef struct snap addr {
uint64 t addr;
uint32 t size;
snap_addrtype t type; /* DRAM, NVME, ... */
snap_addrflag t flags; /* SRC, DST, EXT, ... */
} snap_addr_t; /* 16 Bytes */

This constraint is due to the way Vivado HLS handles registers and the way we have implemented them.
As we need some fixed address for read and write thes registers for the software, we had to constraint
this size so that address are always at the same location.

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 25

CAP!

RN

)
=

Solution:

To correct this issue, reduce the size of the helloworlid job t so thatitis below or equal to 108 Bytes.
If user needs more than 108 Bytes to exchange data, then he should create a zone in server memory
that can contain as much as whe wants and share it with the action.

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 26

CAP!

)
(&

III

2.3 “make model” command

2.3.1 ERROR message : make error while compiling PSLSE model
Command :

Message :

[COMPILE PSLSE ...] start xx:xx:xx Thu Jan XX XXXX
Error: please look into

/home/nimbix/snap/hardware/logs/compile pslse.log

make[2]: *** [pslse] Error 255

make[l]: *** [model] Error 2

make: *** [model] Error 1

Looking to the first lines of /home/nimbix/snap/hardware/logs/compile pslse.log
checking PSLSE ROOT....: line24: version: command not found
WARNING: PSLSE version= should be v3.1

Explanation:
Dependencies requests stable releases. PSLSE release should be v3.1 so that SNAP can work with it.

Nimbix builds it by default

NIMBIX Solution:

cd ../pslse && git checkout v3.1

cd ../snap && make model

2.3.1 ERROR message : Cascaded errors
Command :

Message :

[CONFIG ACTION HW....] start 10:33:19 Thu Feb 01 2018

Calling make -C /afs/xxxxx/snap/actions/hls_helloworld hw

make[5]: *** [hlsUpperCase_xcku060-ffval156-2-e/helloworld/syn] Error 1
make[4]: *** [hw] Error 1

make[3]: *** [action_hw] Error 2

make[2]: *** [.hw_project_done] Error 2

make[1]: *** [model] Error 2

make: *** [model] Error 1

Explanation:
Error is related to a make in sub-directories.

Solution:

Re-run the make in the hw directory to get more details (This example is related to hls_helloworld)

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 27

J
CAPI

©

Power Systems
2.4 “run_sim” command
2.4.1 ERROR message : Failed to attach action
Command :
$ snap memcopy -i tl (or any simulation executed)
Message :

$ snap memcopy -i tl
reading input data 4096 bytes from tl

PARAMETERS:
input: tl
output: unknown
type in: 0 HOST DRAM
addr in: 000000000254c000
type out: ffff UNUSED
addr out: 0000000000000000
size in/out: 00001000
mode: 00000000

INFO:Connecting to host 'hdclv0l6.boeblingen.de.ibm.com' port 16384
err: failed to attach action 0: No such device
INFO:detach response from from pslse

Explanation:
SNAP is not able to attach the action. It may be due to a lack of information of the system. It seems as if
you didn’t run the snap_maint command prior to execute your test

Solution:

$ snap maint -v
$ snap _memcopy -i tl -t 200

2.4.2 ERROR message : Timer expired
Command :

$ snap _maint -v

$ snap memcopy -i tl (or any simulation executed)
Message :

$ snap memcopy -i tl

/e

Action is running got end of exec. Time

err: job execution -6: Timer expired!
INFO:detach response from from pslse

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 28

CAP!

I —_———=T=

Power Systems 2

Explanation:
Depending on the simulator used and the test you are doing, simulation needs much more time than a

standard test. Default time is set to 10 secs. Extend the timeout to a much greater value with the -t
argument.

Solution 1:

$ snap memcopy -i tl -t 200

Solution 2:

If this is not sufficient, then try and use the SNAP_TRACE=0xF option to understand if the freeze is
located into the action (after the snap_action_sync_execute_job) or elsewhere.

il

R hw snap mmio read32(0x1ed1030, £000, 1) O

D snap_action_sync_execute_job: rc=0

err: job execution -6: Timer expired!

D snap detach action Enter

D hw detach action Enter Action: 0x216 Base: f000 timeout: 60 sec Seq: 0xf002
il

Then use the waveforms to debug and see which function is called (cf 0). Good to know, all HLS
functions are active when their ap_start signal is active.

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 29

J
CAPI

)
(&

2.5 “make image” command

2.5.1 WARNING message : TIMING FAILED, but may be OK for lab use

Command :
Message :
[BUILD IMAGE.........] start Mon Jun 5 16:17:26 CEST 2017
open framework project 16:17:37
start synthesis with directive: Default 16:17:42
start locking PSL 16:34:11
start opt design with directive: Explore 16:41:58
start place design with directive: Explore 16:52:05
start phys opt design with directive: Explore 17:13:11
start route design with directive: Explore 17:23:38
generating reports 17:43:29
Timing (TNS) -6 ps
WARNING: TIMING FAILED, but may be OK for lab use
generating bitstreams 17:47:36
removing temp files 17:50:55
[BUILD IMAGE.........] done Mon Jun 5 17:51:06 CEST 2017

Explanation:
The design you have asked to build cannot be correctly timed by the Vivado tool. This means that the

hardware logic used to build your code cannot be connected in a correct manner so that all signals are in
synchronous mode. This can be due to multiple causes.

The threshold authorizing or not the use of the image is defined as the TIMING_LABLIMIT variable in
~snap/hardware/setup/snap_build.tcl and follows the rule defined as follow:

- Image will be deleted if : Timing (TNS) < -250ps
- Image will be kept for lab tests if : -250ps < Timing (TNS) < 0
- Image will be ok for production if : Timing(TNS) >0

It is recommended to not use an image with a negative TNS value since random behavior of your code
can be faced in extreme conditions of temperature.

Solution:
1. If the negative timing is very little (<100ps) : run once again the same image build

2. Check that the FPGA is not too full :
~snap/hardware/build/Reports/utilization_route_design.rpt
=>» look for Util% and check that all values are < 75%

3. Change the way the code is written
=>» Identify where the timing problem is ~snap/hardware/build/Reports/timing_summary.rpt
=> look for “VIOLATED” word to identify the issue and identify the name of the failing path

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 30

O

>

-
||

I —— = H)
Power Systems

In the vivado_hls.log file located in the directofy of your HLS ekample, identify the
function that contains this element and modify the code so that synthesis will be
done differently.

name on_hashjoin_hls _p hash

ect name 'action_hashjoin hls _p hashtable table ke®

I =T R T s G EE Sl hashtable table mug

ject name 'action _hashjoin hls_tl name' to 'action_hag

ct name ‘'action_hashjoin_hls t3 animal' to ‘action_ |

4. (not recommended) for very specific design, you can also change the synthesis
directive strategy in ~snap/hardware/setup/run_build.tcl

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 31

CAP!

P
N
ANNEX 1 : View of the FPGA design

If you want to see the “inside” of the image built for the FPGA, you can choose the dcp (design
checkpoint) file corresponding to the different stages of building the image.

In non cloud mode, meaning when not using Partial reconfiguration flow, these files can be found in
~snap/hardware/build/Checkpoints.

The order of the build is the following:

- synth_design.dcp = logic is “synthesized” — converted to logic resources

- opt_design.dcp = logic ressources are optimized

- place_design.dcp = logic is placed but not routed yet

- phys_opt_design.dcp = logic placement has been optimized

- route_design.dcp =» design placed and routed (the final view)
Command :

cd ~snap/hardware/build/Checkpoints
vivado route design.dcp

Nimbix specific: On Nimbix, the way the SNAP+PSL are connected to the user design is done differently
for security reasons. Only some checkpoints can be seen, and not the final routed chip. However some
files can be found in DCP_ROOT defined as /data/snap.xxxxx_xxx

- user_action_synth.dcp =>» contains only user design (before place/route level)
- snap_static_region_bb.dcp =» contains everything but user design (after place/route level)

Command :

cd /data/snap.xxxx_ XXX

vivado snap static region bb.dcp

February 21th, 2017 SNAP Framework built on Power™ CAPI technology Page 32

