& cipeTi

NVMe to AXI Bridge

Technical Description

Eidetic Communications Inc. 3553 31t NW, Calgary, Alberta T2L 2K7 www.eideticom.com info@eideticom.com

http://www.eideticom.com/

Eideticom NVMe Technical Description

Table of Contents

R 101 oo [F T { [o SRR 3
Y (=] 0 T O AV VT SR 3
2.1 EIdetiCOM NVIME HOSL......ooiiiiiiiiie ettt nee s 4
2.2 BUFfer Memory [aYOULcoviiiiiceee et 5
2.3 AXI Interconnect Memory MapPing.......coeoeriiirieieieenesie st 5
2.4 NVMe HOSt AQUIESS SPACE.......ccuiiiiirieieeie it esteete s e e e e e e e steeae e e sraene e e sreeneens 6
241 NVIME HOSt ACTION REGISTEIS ...eviiiiiiieiiiieeeee ettt ettt e e e s s et eeeeeeeeaas 6
2.4.2 AMIN REGISTEIS 1 neviiiiit ettt ettt ste e st ste e st e s s be e s sbaeesabeesbeaessbeesseeessseesnseeesnseesnns 7

3 Programming GUIGEcc.eiveiieieiic ittt ettt e e s ra e te e e e s reeaeeseesneesreenee e 8
3.1 INItIAHZATION SEQUENCEc.eitiiiiieeiieee ettt ab b 8
3.2 AcCtion COmMMANT SEUUENCEc..eceiireeieciesieesteeeesteeste e e e e s e e steeaesseesraenesreesreeneens 8

Rev 4 2018-02-01 20of9

Eideticom NVMe Technical Description

1 Introduction

This document provides a technical description of the Eideticom NVMe to AXI Bridge. This design is part
of the OpenPOWER CAPI SNAP accelerator framework. The NVMe to AXI bridge is used to access data

on attached NVMe SSD’s. The focus of the document is on the NVMe host subsystem and how to
program the NVMe host to transfer data to or from the attached SSD’s from or to the onboard DDR

memory.

2 System Overview
The NVMe to AXI bridge system is shown below in Figure 1. The system consists of an Eideticom NVMe
Host System, Xilinx PCle Root Complexes, and Xilinx AXI interconnect blocks.

NVMe-to-AX| bridge

to on board DDR

from
action

from
MMIO

32 Bit

Interface
—

AX| Interconnect

0x0000

0x2_0000_0000 | 1 AXI-MM
ﬁ Master

] PCle X

QO root complex <2

AXI-MM | 0000 | o XjinxIP | @

Slave < AXI-MM ®

Slave O

AxiLite | Queve 1] 128 Bit - &
Save | [Queue I[] ALt
ave

Control Queue —

Parameter

Regioters | L Queue [[]] = —
NVMe) AXI-MM
Host g | o000 Master

o <t

Pcle |5 Poe | &

A = root complex 2

AXI-Lite| ACCESS | = XjinxIP | @

Master § 0x2000 AXI-MM °©

. Slave O

32 Bit o
Root Complex Cfg 0 AX|-Lite
Slave

NVMe

card

Control
Paramete:
Registers

Root Complex Cfg 1

NVMe

card

Control
Paramete

Registers

Figure 1: NVMe To AXI Bridge

Rev 4

2018-02-01

30f9

Eideticom NVMe Technical Description

2.1 Eideticom NVMe Host

The Eideticom NVMe Host system is shown below in Figure 2. This system is responsible for receiving
data transfer commands from the CAPI Action Framework and issuing the necessary NVMe requests and

receiving the NVMe responses in order to transfer the data to or from the NVMe SSD drives.

The Tx Buffer is used for submission queues and admin command tx data. The Rx Buffer is used for
completion queues and for admin command rx data. The completion FSM manages the completion
gueues and the submission FSM manages the submission queues.

Admin submission queue entries and Tx command data are written directly to the Tx Buffer using the
MMIO/Action AXI interface. Admin completion queue entries and Rx command data are read directly

from the Rx Buffer using the MMIO/Action AXI interface.

|0 submission entries are automatically written to the Tx Buffer by the Submission FSM when a IO

command is written using the MMIO/Action AXI interface. 10 completion entries are interpreted by the

Completion FSM and the completion status is available from the MMIO/Action AXI interface.

NVMe Host

{ MSI
leti
Cor;ps;jltlon Rx Buffer f—
AXI-MM AXI-MM
Slave Slave
~—»] N A
Submission
FSM Tx Buffer
AXI-MM
¥ Master
Control
Regs

Figure 2: NVMe Host System

Rev 4 2018-02-01

4 0f 9

Eideticom NVMe Technical Description

2.2 Buffer memory layout

The buffer memory layouts are listed in the tables below. Each of the Tx submission queue entries is 64
bytes in length. Each of the Rx completion queue entries is 16 bytes in length. The PCIE virtual address
should be the value used to initialize the queue addresses in the NVME SSD. The PCIE virtual addresses
will be automatically mapped to the correct physical address by the NVME host logic.

Table 1 Tx Buffer Layout

Start Address PCIE Virtual Address Memory Region

0x6f00 0x28000000 Admin Tx Data (4 kB)
0x3880 0x20000000 10 SQ SSD1 (218 entries)
0x3780 0x18000000 Admin SQ SSD1 (4 entries)
0x100 0x10000000 10 SQ SSDO (218 entries)
0x0 0x08000000 Admin SQ SSDO (4 entries)

Table 2 Rx Buffer Layout

Start Address PCIE Virtual Address Memory Region

0x1bcO 0x50000000 Admin Rx Data (8 kB)
Oxe20 0x48000000 CO SQ SSD1 (218 entries)
OxdeO 0x40000000 Admin CQ SSD1 (4 entries)
0x40 0x38000000 IO CQ SSDO (218 entries)
0x0 0x30000000 Admin CQ SSDO (4 entries)

2.3 AXl Interconnect Memory Mapping
The MMIO/Action AXI addresses are mapped to locations below.

Address Memory Region

0x0000 NVMe Host

0x1000 PCle Config Root Complex 0
0x2000 PCle Config Root Complex 1

The NVMe Host to PCle AXI addresses are mapped to the locations below. These locations are accessed
using the NVMe Host ADMIN_PCIE_ADDR and HOST_PCIE_DATA registers.

Address Memory Region
0x0000 PCle Root Complex 0 PCI Space
0x2000 PCle Root Complex 1 PCI Space

The PCle to AXI addresses are mapped to the locations below. These locations are accessed by the PCIE
SSD’s based on the NVMe command they are processing.

Rev 4 2018-02-01 50f9

Eideticom NVMe Technical Description

Address

Memory Region

0x0000_0000_0000_0000
0x0000_0002_0000_0000

NVMe Rx Buffer
DDR Access

2.4 NVMe Host Address Space
The NVMe Host address space is mapped as below.

Address

Memory Region

0x00
0x80
0x100

0x104

NVMe Host Action Registers
NVMe Host Admin Registers

NVMe Host Buffer Data
(HOST_BUFFER_DATA)
NVMe Host PCle Data
(HOST_PCIE_DATA)

2.4.1 NVMe Host Action Registers
These registers are used by the action for sending commands to read and write data, and for requesting

the status of issued commands.

Table 3 Action Write Registers

Offset Register Description

0x0 DPTR_LOW Transfer data pointer low 32 bits

0x4 DPTR_HIGH Transfer data pointer high 32 bits

0x8 LBA LOW SSD LBA low 32 bits

0xC LBA_HIGH SSD LBA high 32 bits

0x10 LBA_NUM Number of LBA blocks in transfer

0x14 COMMAND Command Register. Writing to
this location starts the data
transfer.

Table 4 Action Read Registers

Offset Register Description

0x0 STATUS Command completion status for
all 16 action fifos and submission
queue full flags.

0x4 TRACK_O Action ID[0] status fifo

OxN*4 + 4 TRACK_N Action ID[N] status fifo

0x40 TRACK 15 Action ID[15] status fifo

Rev 4

2018-02-01

60f9

Eideticom NVMe Technical Description

2.4.1.1 Action Command Register
Writing to the action command register will start the data transfer. The bits of this register are defined
below.

Bits Assignment Meaning

3:0 CMD_TYPE 0 == Read SSD Command
== Write SSD Command
2 == Admin Command

7:4 CMD_QUEUE_ID 0 ==SSD0 Admin Q
1==SSD010Q
2 ==5SD1 Admin Q
3==5SD110Q

11:8 CMD_ACTION_ID Action ID for command

31:12 RESERVED

2.4.1.2 Action Status Register
Bits Assignment Meaning

3:0 Submission Queue Full Bit 0 — 1 == SSDO Admin Q Full
Bit 1 —1 ==SSDO 10 Q Full
Bit 2 —1 == SSD1 Admin Q Full
Bit3—1==SSD1 10 Q Full

16 Action O FIFO Status 0 == Action O FIFO empty

1 == Action O FIFO has data
16+N Action N FIFO Status 0 == Action N FIFO empty

1 == Action N FIFO has data
31 Action 15 FIFO Status 0 == Action 15 FIFO empty

1 == Action 15 FIFO has data

2.4.1.3 Action Track Registers
Offset Register Description
Ox4 TRACK_O Bit 0 — ‘1’ Action 0 command complete (self-clearing)
Bit 1 — ‘1’ Action 0 command returned error (self-clearing)
Bits 31:2 -- Reserved
OxN+4 | TRACK_N Action ID[N] status as above

0x40 TRACK 15 | Action ID[15] status as above

2.4.2 Admin Registers
Offset | Name Assignment

0x0 ADMIN_CONTROL Bit 0 — Enable NVMe Host
Bit 1 — Enable Auto-increment Addressing
Bit 2 — Clear Error Status
0x4 ADMIN_STATUS Bit 0 — NVMe Host Ready
Bit 1 — Error Condition Detected
Bit 2 — Admin Command to SSD0O Complete

Rev 4 2018-02-01 7 of 9

Eideticom NVMe Technical Description

Bit 3 — Admin Command to SSD1 Complete

0x8 ADMIN_BUFFER_ADDR | Buffer address for accessing buffer data.

0xC ADMIN_PCIE_ADDR PCle address for accessing PCle space.

0x10 | ADMIN_NSID NVMe Namespace ID to be used for action
commands

0x14 | ADMIN_ASQ_INDEX Admin submission queue indexes.
Bits 7:0 => SSDO Admin Submission Queue
Index
Bits 23:16 => SSD1 Admin Submission Queue
Index

0x18 | ADMIN_SCRATCH Admin scratch register. Read and writing has
no effect on NVMe functionality.

3 Programming Guide

3.1 Initialization sequence

This sequence needs to be performed after system power on and anytime after any SSD changes are
made to the system. After this sequence is complete the NVME to AXI Bridge is ready to receive data
transfer commands from the action interface.

1) Wait until the NVMe host ready bit is set in the ADMIN_STATUS register.

2) Set the enable NVMe host bit in the ADMIN_CONTROL register.

3) Set up the PCle root complexes using the MMIO interface to write to the PCle Root Complex
Config address spaces.

4) Set up the SSD PCIE registers using the NVME host registers ADMIN_PCIE_ADDR and
HOST_PCIE_DATA.

5) Write the admin submission queue entry to the Tx Buffer using the NVME host registers
ADMIN_BUFFER_ADDR and HOST_BUFFER_DATA.

6) If the command needs to send data, such as a set features command, write the data to the Tx
Buffer using the NVMe Host registers ADMIN_BUFFER_ADDR and HOST_BUFFER_DATA.

7) Write to the COMMAND register to start the command.

8) Poll the ADMIN_STATUS register until command is completed.

9) Read the completion queue entry from the Rx Buffer using the NVME host registers
ADMIN_BUFFER_ADDR and HOST_BUFFER_DATA.

10) If the command returns data, such as an identify command, read the data from the Rx Buffer
using the NVMe Host registers ADMIN_BUFFER_ADDR and HOST _BUFFER_DATA.

3.2 Action Command Sequence

This sequence is used by the action interface to transfer data to or from the attached SSD’s from or to
the onboard DDR memory. This sequence can be re-issued in parallel by any of the 16 action kernels
and the data transfer will happen for all sequences concurrently. A action kernel can issue several
command in sequence and the returned status completion will occur in the sequence in which the
commands were issued.

Rev 4 2018-02-01 8 of 9

Eideticom NVMe Technical Description

1) Ensure that there is space in the |10 submission queue by checking the relevant bits in the
STATUS registers in the action address space.

2) Program the DPTR_LOW register in the action address space with the low 32 bits of the DDR
memory location of the source or destination data.

3) Program the DPTR_HIGH register in the action address space with the value 0x00000002 + bit 32
of the DDR memory location of the source or destination data.

4) Program the LBA_LOW register in the action address space with the low 32 bits of the SSD LBA
being accessed.

5) Program the LBA_HIGH register in the action address space with the high 32 bits of the SSD LBA
being accessed.

6) Program the LBA_NUM register in the action address space with the number of LBA blocks that
will be transferred.

7) Setthe CMD_TYPE in the COMMAND register data to reflect whether the access is a transfer to
(write) or from (read) the SSD drive.

8) Setthe CMD_QUEUE_ID in the COMMAND register data to reflect which attached SSD is to be
accessed.

9) Setthe CMD_ACTION_ID in the COMMAND register data to the action kernel ID that is issuing
the command. This value will be used to determine which status FIFO will signal the command
completion.

10) Write the COMMAND data to the COMMAND register. This will start the command.

11) Wait for command completion. There are two options.

a. Poll the STATUS register in the action address space until the bit location equal to the
action kernel id is “1’. Next read the relevant TRACK_N register to get the completion bit
(bit 0) and the error status bit (bit 1) for the command.

b. Or: Poll the relevant TRACK_N register until a ‘1’ is read from the completion bit (bit 0).
The error status will be returned in bit 1.

Rev 4 2018-02-01 90of9

