
June 1st, 2016January 31th, 2018 SNAP Framework built on Power™ CAPI technology

CAPI SNAP Education Series:
User Guide

CAPI SNAP Education

hls_memcopy : howto?

V2.3

2SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

Architecture of the SNAP git files
SNAP

actions

• hls_memcopy

• sw

• snap_memcopy.c

• sw_action_memcopy.c

• hw

• hw_action_memcopy.cpp

• hw_action_memcopy.H

• include

• action_memcopy.h

• tests

• doc

hardware

• sim

• build/Images

software

• include

• snap_types.h

• tools

• snap_maint

• snap_find_card

Specific constants + “data exchanged” structures used by this action (i.e. Action_Release_Level)

“FPGA executed” action program

Regression test used to show how to run this hls_example

Common constants + structures (i.e.snap_addr) used by all hls actions and applications

Main application program

programs used to “discover” available actions, do basic settings and attach / detach actions

Specific constants + “data exchanged” structures used by sw action and hw action + application (i.e. Action_Type)

Compilation option :

export ACTION_ROOT=$SNAP_ROOT/actions/hls_memcopy

export SDRAM_USED=TRUE ( “Enable SDRAM” must be set in Kconfig menu)

“CPU executed” action program

Sim directory used for simulation (inside which we can run ./run_sim to simulate the current action)

Location of bitstream files used to “burn” FPGA when current action is ready to be used in actual hardware

3SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

Action overview
Purpose: Transferring data between different resources :

• host memory,
• DDR,
• NVMe (soon)

When to use it:
• Understand Basic access to different interfaces
• Memcopy benchmarking

Memory management:
• Application is managing address of Host memory and DDR
• Action is testing if size of transfer is greater than DRAM size (see constants)
• Size of buffer (BRAM) used to copy data can be configured (see constants)

Known limitations:
• HLS requires transfers to be 64 byte aligned and a size of multiples of 64 bytes
• DDR simulation model reads will return wrong values if non 64 bytes words or non initialized

words are read (this is due to the simulation model only)

CAPI SNAP Enabled Card

hls_memcopy

DRAM
on-card

Network

(TBD)

NVMeAXI
Host server

memory

BRAM

AXI

AXI

4SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

Action usage (1/2)
Usage: ./snap_memcopy [-h] [-v, --verbose] [-V, --version]

-C, --card <cardno> can be (0...3)

-i, --input <file.bin> input file.

-o, --output <file.bin> output file.

-A, --type-in <CARD_DRAM, HOST_DRAM, ...>.

-a, --addr-in <addr> address e.g. in CARD_RAM.

-D, --type-out <CARD_DRAM, HOST_DRAM, ...>.

-d, --addr-out <addr> address e.g. in CARD_RAM.

-s, --size <size> size of data.

-t, --timeout Timeout in sec to wait for done. (10 sec default)

-X, --verify verify result if possible (only CARD_DRAM)

-N, --no irq Disable IRQs

Example :
export SNAP_TRACE=0x0

snap_maint -vv

echo move 4kB from Host to DDR@0x0 and back from DDR@0x0 to Host

rm t2; dd if=/dev/urandom of=t1 bs=1K count=4

SNAP_CONFIG=FPGA snap_memcopy -i t1 -D CARD_DRAM -d 0x0

SNAP_CONFIG=FPGA snap_memcopy -o t2 -A CARD_DRAM -a 0x0 -s0x1000

diff t1 t2

if diff t1 t2 >/dev/null;then echo "RC=$rc file_diff ok";else

echo -e "$t RC=$rc file_diff is wrong\n$del";exit 1;

fi

Options: (default option in bold)

SNAP_TRACE = 0x0  no debug trace

SNAP_TRACE = 0xF  full debug trace

SNAP_CONFIG = FPGA  hardware execution

SNAP_CONFIG = CPU  software execution

5SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

Different cases that can be run
snap_maint -vv –C0

echo create a 512MB file with random data …wait…

rm t2; dd if=/dev/urandom of=t1 bs=1M count=512

echo READ 512MB from Host – one direction

snap_memcopy –C0 -i t1

echo WRITE 512MB to Host – one direction – (t1!=t2 since buffer is 256KB)

snap_memcopy –C0 –o t2 –s0x2000_0000

echo READ 512MB from DDR – one direction

snap_memcopy –C0 –s0x2000_0000 –ACARD_DRAM –a0x0

echo WRITE 512MB to DDR – one direction

snap_memcopy –C0 –s0x2000_0000 –DCARD_DRAM –d0x0

Move 4KB from Host to DDR and back to Host and compare

rm t2; dd if=/dev/urandom of=t1 bs=1K count=4

snap_memcopy -i t1 -D CARD_DRAM -d 0x0

snap_memcopy -o t2 -A CARD_DRAM -a 0x0 -s0x1000

diff t1 t2

echo same test using polling instead of IRQ waiting for the result

snap_memcopy -o t2 -A CARD_DRAM -a 0x0 -s0x1000 -N

Action usage (2/2)

Take in account that running on a simulator is

far more slow than an execution on a FPGA:

 moving 512MB with a simulator is a

HUGE challenge. May be just trying 4K

should be sufficient !

6SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

memcopy registers

SNAP

MMIOPower 8

snap_memcopy

application

Job

Manager

« Action » RTL code

generated by HLS

hw_action_memcopy.cppAXI

DMA

DRAM
on-card

Network

(TBD)

NVMeAXI

Action registers

addr_in

queue_workitem

1
0
8
 b

yte
s

1
6
b
yte

s

act/flags retc

priv_data

seq

addr_out

7SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

Application Code + software action code : what’s in it?
Start

Get input arguments to

set action configuration

Allocate card

Attach action

Prepare memcopy:

Addr_set(IN)

Addr_set(OUT)

Job_set

snap_action_

sync_execute_job

Read data from

input_file if defined

Write data to

output_file if

output_buffer is in

Host memory
Detach action

Detach card

Exit

Compare data if Verify

option and type_in and

type_out = Host memory

Print results

Read data from

input_file if type_in ≠

Host memory

Write data to

output_file if type_out

≠ Host memory

memcpy(dst,src,len)

Application: snap_memcopy.c CPU executed action: sw_action_memcopy.c

Function calling the software

memcopy processing code

(purpose: application sw code = action code)

8SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

Hardware action Code : what’s in it?

Is Act_reg->

Control.flags

set ?

Start

Exit action sending back :

Action_Config-> action_type

Action_Config-> release_level

No

Yes

Are transfer size

to/from DDR < max ?

Calculate number of

buffers to transfer

Align Input_Address

and Output_Address

with port width

Yes

Exit actionNo

Read action_xfer_size Bytes

from Input_Address +

address_xfer_offset

Write action_xfer_size Bytes

from Output_Address +

address_xfer_offset

Decrement action_xfer_size

Increment address_xfer_offset

Set ReturnCode Exit action

FPGA executed Action: hw_action_memcopy.cpp

 Buffer size

(MAX_NB_OF_BYTES_READ)
is defined as a constant

Max transfer size

(CARD_DRAM_SIZE)

 is defined as a constant

hls_action

process_action

9SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

Constants - Ports
Constants:  $ACTION_ROOT = snap/actions/hls_memcopy

Ports used:

Constant name Value Type Definition location Usage

MEMCOPY_ACTION_TYPE 0x10141000 Fixed $ACTION_ROOT/include/action_memcopy.h memcopy ID - list is in snap/ActionTypes.md

RELEASE_LEVEL 0x00000023 Variable $ACTION_ROOT/hw/hw_action_memcopy.H
release level – user defined

MAX_NB_OF_BYTES_READ (256 * 1024) Variable $ACTION_ROOT/hw/hw_action_memcopy.H Max size in Bytes of the buffer for read/write access

MAX_NB_OF_WORDS_READ (MAX_NB_OF_BYTES_READ/BPERDW) Operation $ACTION_ROOT/hw/hw_action_memcopy.H Max size in 64B words of the buffer for read/write access

CARD_DRAM_SIZE (1 * 1024 *1024 * 1024) Variable $ACTION_ROOT/hw/hw_action_memcopy.H
Max size of the DDR - prevents from moving data with a
size larger than this value

Ports name Description Enabled

din_gmem
Host memory data bus input
Addr : 64bits - Data : 512bits

Yes

dout_gmem
Host memory data bus output
Addr : 64bits - Data : 512bits

Yes

d_ddrmem
DDR3 - DDR4 data bus in/out
Addr : 33bits - Data : 512bits

Yes

nvme
NVMe data bus in/out
Addr : 32bits - Data : 32bits

No (soon)

10SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

MMIO Registers

$ACTION_ROOT/hw/hw_action_memcopy.H
typedef struct {

CONTROL Control; /* 16 bytes */

memcopy_job_t Data; /* 108 bytes */

uint8_t padding[SNAP_HLS_JOBSIZE - sizeof(memcopy_job_t)];

} action_reg;

$ACTION_ROOT/include/action_memcopy.h
typedef struct memcopy_job {

struct snap_addr in; /* input data */

struct snap_addr out; /* output data */

} memcopy_job_t;

Simu - WR Write@ Read@ 3 2 1 0

0x3C40 0x100 0x180 flags short action type f001_01_00

0x3C41 0x104 0x184 0 0x102 - 0x104 SUCCESS/FAILURE

0x3C42 0x108 0x188 c0febabe

0x3C43 0x10C 0x18C deadbeef

Write@ Read@ 3 2 1 0

0x3C44 0x110 0x190

0x3C45 0x114 0x194

0x3C46 0x118 0x198

0x3C47 0x11C 0x19C

0x3C48 0x120 0x1A0

0x3C49 0x124 0x1A4

0x3C4A 0x128 0x1A8

0x3C4B 0x12C 0x1AC

snap_addr.addr_out (MSB)

snap.addr_out.size

snap.addr_out.flags (SRC, DST, …) snap.addr_out.type (HOST, DRAM, NVME,..)

snap_addr.addr_out (LSB)

action_reg.Data Action specific - user defined - need to stay in 108 Bytes

memcopy_job_t This is the way for application and action to exchange information through this set of registers

Typical Write value Typical Read value

snap_addr.addr_in (LSB)

snap_addr.addr_in (MSB)

snap_addr_in.size

snap.addr_in.flags (SRC, DST, …) snap.addr_in.type (HOST, DRAM, NVME,..)

Private Data

Read and Write are considered from the application / software side

act_reg.Control This header is initialized by the SNAP job manager. The action will update the Return code and read the flags value.

CONTROL If the flags value is 0, then action sends only the action_RO_config_reg value and exit the action, otherwise it will process the action

Typical Write value Typical Read value

sequence

Retc (return code 0x102/0x104)

Private Data

$SNAP_ROOT/actions/include/hls_snap.H
typedef struct {

snapu8_t sat; // short action type

snapu8_t flags;

snapu16_t seq;

snapu32_t Retc;

snapu64_t Reserved; // Priv_data

} CONTROL;
$SNAP_ROOT/software/include/snap_types.h
typedef struct snap_addr {

uint64_t addr;

uint32_t size;

snap_addrtype_t type; /* DRAM, NVME, ... */

snap_addrflag_t flags; /* SRC, DST, EXT, ... */

} snap_addr_t;

11SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

To run these performances, run the following:
snap_find_card –A ADKU3

1

snap_maint –vvv –C1

echo create a 512MB file …wait…

dd if=/dev/urandom of=t1 bs=1M count=512

echo READ 512MB from Host

snap_memcopy –C1 -i t1

echo WRITE 512MB to Host

snap_memcopy –C1 –o t2 –s0x2000_0000

echo READ 512MB from DDR

snap_memcopy –C1 –s0x2000_0000 –ACARD_DRAM –a0x0

echo WRITE 512MB to DDR

snap_memcopy –C1 –s0x2000_0000 –DCARD_DRAM –d0x0

Performances measurements

hls_memcopy / ADKU3 board 1-direction access

256KBytes buffer - 64 access/burst Read from Host Write to Host Read from DDR3 Write to DDR3

Bytes transfered BW (GBps) BW (GBps) BW (GBps) BW (GBps)

512MB memory area transfer 3.337 3.305 10.336 9.584

Measurements on ADKU3 card

Latency to access DDR3 memory:
• Read : from HLS_action request to data in HLS : 232ns

• Write : from HLS_action request to data in DDR : 226ns

12SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

Performances measurements

hls_memcopy / N250S board 1-direction access

256KBytes buffer - 64 access/burst Read from Host Write to Host Read from DDR4 Write to DDR4

Bytes transfered BW (GBps) BW (GBps) BW (GBps) BW (GBps)

512MB memory area transfer 3.166 3.569 14.854 13.524

Measurements on N250S card

Latency to access DDR4 memory:
• Read : from HLS_action request to data in HLS : 184ns

• Write : from HLS_action request to data in DDR : 105ns

To run these performances, run the following:
snap_find_card –A N250S

0

snap_maint –vvv –C0

echo create a 512MB file …wait…

dd if=/dev/urandom of=t1 bs=1M count=512

echo READ 512MB from Host

snap_memcopy –C0 -i t1

echo WRITE 512MB to Host

snap_memcopy –C0 –o t2 –s0x2000_0000

echo READ 512MB from DDR

snap_memcopy –C0 –s0x2000_0000 –ACARD_DRAM –a0x0

echo WRITE 512MB to DDR

snap_memcopy –C0 –s0x2000_0000 –DCARD_DRAM –d0x0

13SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

Path of improvements
1. HLS memcpy function waits for the end of the request before starting a new one. Being able to parallelize reads with writes

since both ports are independent would increase performance since the DMA is able to pipeline requests.

14SNAP Framework built on Power™ CAPI technology2017, IBM Corporation

History of this document and of the action release level
V2.0: initial document
V2.1: new files directory structure applied
V2.2: changes to have one direction access to get real performances
V2.3: simplification of paths thanks to new SNAP features - updates in documentation – Issue#320 circumvention removed

