

 P a g e 1

SNAP Framework built on Power™ CAPI technology February 22th, 2018

IBM CAPI SNAP framework
Version 1.0

How to Create a New Action in SNAP environment.

The Guide describes how to create a new action in SNAP environment.

 Overview

Let’s imagine that you want to create a new action for which files used will be as follow:

- Application  snap_newaction.c Directory: actions/hls_newaction/sw

- Software action  newaction_software.c Directory: actions/hls_newaction/sw

- Hardware action  newaction_hardware.cpp Directory: actions/hls_newaction/hw

- Common header file  newaction_commonheader.h Directory: actions/hls_newaction/include

The simplest is to start from an existing example that contains the same interfaces to external

resources you need. This will setup all the access you will need for your algorithm.

We will use the Nimbix cloud environment to illustrate the changes but this can be easily translated to

any other environment.

This document will succesfully go through the following items:

- install and setup the SNAP environment

- create a newaction action by duplicating and adapting an existing action

- run a modelization of the new action

Related documentation

Quick Start Guide on a General environment

How to debug an issue in SNAP environment

How to optimize a function in SNAP environment

Can be found in https://github.com/open-power/snap/doc

https://github.com/open-power/snap/doc

 P a g e 2

SNAP Framework built on Power™ CAPI technology February 22th, 2018

Contents

Overview ... 1

1. Environment setup ... 3

2. Choose an NEWACTION_TYPE id so that your action will be identified .. 4

3. Copy and adapt an existing action example to a new action ... 5

4. Build a simulation model and execute it ... 12

5. Deploy on P8 Machine ... 13

ANNEX 1 : Add a New Action in the Kconfig menu ... 14

 P a g e 3

SNAP Framework built on Power™ CAPI technology February 22th, 2018

1. Environment setup

Let’s first install the SNAP framework that can be downloaded from github:

cd

git clone https://github.com/open-power/snap

cd ~/snap

cp ~/snap.env.sh . (<= Nimbix specific)

make snap_config

Choose the card that will contain the resources you need

then select HLS Action type.

Select then the different resources of the card you have selected and that you need to use for your

algorithm (ADKU3 on left – N250S on right)

https://github.com/open-power/snap

 P a g e 4

SNAP Framework built on Power™ CAPI technology February 22th, 2018

VERY IMPORTANT:

Be coherent with the resources you are selecting. If you select the SDRAM or NVMe, you will need to

ensure that they are enabled in the hardware action ports (function hls_action of the hardware action).

It makes sense as SNAP will attach the physical hardware drivers you selected to your action.

On Nimbix, don’t forget to select the Cloud Build option

 After exiting the snap_config, you should get the following screen if this is the first time you use the

snap_config, otherwise you may have ACTION-ROOT set to the previous configuration

Edit ~/snap/snap_env.sh and add the path to the new action directory

From snap directory type :

Make software to make sure we have all the libs prepared for next “make” steps

2. Choose an NEWACTION_TYPE id so that your action will be identified

Edit ~snap/ActionTypes.md and pick up a new number in the file. Let’s get for example 00.00.00.01. You

will be able to keep it for your internal use or follow the process explained at the bottom of this

document to get a unique number.

 P a g e 5

SNAP Framework built on Power™ CAPI technology February 22th, 2018

3. Copy and adapt an existing action example to a new action

3.1 Copy an existing hls example

Let’s take the hls_helloworld as the example from which we will start from. You can take any of the

examples or even create a new one copying the different Makefile and the stucture of directories.

cd actions

cp -r hls_helloworld hls_newaction

cd hls_newaction

rm doc/* # <= cleaning unrelated stuff

rm tests/* # <= cleaning unrelated stuff

3.2 Adapt the example : include directory

(cd ~/snap/actions/hls_newaction)

cd include

Rename the copied header file to newaction_commonheader.h. You should so have

[nimbix@JARVICENAE-0A0A1856 include]$ mv action_changecase.h

newaction_commonheader.h

 [nimbix@JARVICENAE-0A0A1856 include]$ ls

newaction_commonheader.h

Edit this file and you will have to adapt the following things:

- ACTION_TYPE value  change the name to NEWACTION_ACTION_TYPE and set its value to the

one you choosed in the ActionTypes.md file. Let’s say you took for example 00.00.00.01

- You will also have to change the structure name to newaction_job and its content to the data

you have decided to exchange between the application and the action.

 P a g e 6

SNAP Framework built on Power™ CAPI technology February 22th, 2018

Don’t also forget to update the following:

- change the #ifndef/#define at the beginning of the file newaction_commonheader.h.

- later, don’t forget to change also all reference to helloworld variables and algorithm

NiceToHave:

 If you want to have your action appearing in the kconfig menu, see Annex 1 of this document.

 P a g e 7

SNAP Framework built on Power™ CAPI technology February 22th, 2018

3.3 Adapt the example : sw directory

cd ../sw

Rename the copied action file to newaction_software.c and the application file to snap_newaction.c.

You should so get :

[nimbix@JARVICENAE-0A0A1856 sw]$ mv action_lowercase.c

newaction_software.c

[nimbix@JARVICENAE-0A0A1856 sw]$ mv snap_helloworld.c

snap_newaction.c

[nimbix@JARVICENAE-0A0A1856 sw]$ ls

Makefile newaction_software.c README.md snap_newaction.c

Edit Makefile and update the name of the software action file(s) (newaction_software.o) and the name

of the application (snap_newaction)

Don’t forget to update the following:

- in newaction_software.c file

o change the include to newaction_commonheader.h and

o change all references (1 occurrence) to HELLOWORLD_ACTION_TYPE variable to

NEWACTION_ACTION_TYPE

o change all references (2 occurrences) to helloworld_job by newaction_job

o later, don’t forget to change also all reference to helloworld variables and algortithm

[nimbix@JARVICENAE-0A0A1860 sw]$ diff newaction_software.c

../../hls_helloworld/sw/action_lowercase.c

36c36

< #include <newaction_commonheader.h>

> #include <action_changecase.h>

58c58

< struct newaction_job *js = (struct newaction_job *)job;

> struct helloworld_job *js = (struct helloworld_job *)job;

97c97

< .action_type = NEWACTION_ACTION_TYPE, // Adapt with your ACTION NAME

> .action_type = HELLOWORLD_ACTION_TYPE, // Adapt with your ACTION NAME

- in snap_newaction.c file

o change the include to newaction_commonheader.h and

o change all references to helloworld_job by newaction_job

o later, don’t forget to change also all reference to helloworld variables and algortithm

 P a g e 8

SNAP Framework built on Power™ CAPI technology February 22th, 2018

[nimbix@JARVICENAE-0A0A1860 sw]$ diff snap_newaction.c

../../hls_helloworld/sw/snap_helloworld.c

38c38

< #include <newaction_commonheader.h>

> #include <action_changecase.h>

82,83c82,83

< "SNAP_CONFIG=FPGA $ACTION_ROOT/sw/snap_newaction -i /tmp/t1 -o /tmp/t2\n"

< "SNAP_CONFIG=CPU $ACTION_ROOT/sw/snap_newaction -i /tmp/t1 -o /tmp/t3\n"

> "SNAP_CONFIG=FPGA $ACTION_ROOT/sw/snap_helloworld -i /tmp/t1 -o /tmp/t2\n"

> "SNAP_CONFIG=CPU $ACTION_ROOT/sw/snap_helloworld -i /tmp/t1 -o /tmp/t3\n"

98c98

< struct newaction_job *mjob,

> struct helloworld_job *mjob,

134c134

< struct newaction_job mjob;

> struct helloworld_job mjob;

327c327

< action = snap_attach_action(card, NEWACTION_ACTION_TYPE, action_irq, 60);

> action = snap_attach_action(card, HELLOWORLD_ACTION_TYPE, action_irq, 60);

Check that everything is ok by typing

make

if you have “….pslse/libcxl/libcxl.h:21:22: error: misc/cxl.h: No such file or directory” error, you can run a

make software from the snap directory, this will compile the libcxl library. Then come back in /sw

directory and run make again.

You should get:

[nimbix@JARVICENAE-0A0A1860 sw]$ ls

Makefile newaction_software.o snap_newaction

newaction_software.c README.md snap_newaction.c

Then execute the action

./snap_newaction

Simple example to test it is for example

 P a g e 9

SNAP Framework built on Power™ CAPI technology February 22th, 2018

echo “hello World. This is my first CAPI SNAP experience.” > /tmp/t1

SNAP_CONFIG=CPU ./snap_newaction -i /tmp/t1 -o /tmp/t2

cat /tmp/t1

hello World. This is my first CAPI SNAP experience.”

cat /tmp/t2

hello world. this is my first capi snap experience.”

 P a g e 10

SNAP Framework built on Power™ CAPI technology February 22th, 2018

3.4 Adapt the example : hw directory

cd ../hw

Change the name of your files to the new names. You should then get

[nimbix@JARVICENAE-0A0A1860 hw]$ ls

Makefile newaction_hardware.cpp newaction_hardware.H README.md

Edit Makefile and change the name of the hardware action file (newaction_hardware.cpp), the name of

the directory where Vivado HLS will generate your vhdl code (hlsNewAction) and the name of your

action as the solution_name (newaction). These 2 last names can be set to anything since they are just

internal names that user doesn’t need to take care of.

[nimbix@JARVICENAE-0A0A1860 hw]$ diff Makefile ../../hls_helloworld/hw/Makefile

40,42c40,42

< SOLUTION_NAME ?= newaction # internal name can be everything

< SOLUTION_DIR ?= hlsnewaction # internal name can be everything

< srcs += newaction_hardware.cpp # hardware action file

> SOLUTION_NAME ?= helloworld

> SOLUTION_DIR ?= hlsUpperCase

> srcs += action_uppercase.cpp

Don’t forget to update the followings:

- in action_hardware.cpp file

o change the include to action_hardware.H and

o change all references to HELLOWORLD_ACTION_TYPE variable to

NEWACTION_ACTION_TYPE

o later, don’t forget to change also all reference to helloworld variables and algortithm

[nimbix@JARVICENAE-0A0A1860 hw]$ diff newaction_hardware.cpp

../../hls_helloworld/hw/action_uppercase.cpp

27c27

< #include "newaction_hardware.H"

> #include "action_uppercase.H"

111c111

< Action_Config->action_type = NEWACTION_ACTION_TYPE; //TO BE ADAPTED

> Action_Config->action_type = HELLOWORLD_ACTION_TYPE; //TO BE ADAPTED

- in action_hardware.H file

o change the include to newaction_commonheader.h and

o change all references to helloworld_job_t by newaction_job_t

o update the #ifndef/#define at the beginning of the file.

o later, don’t forget to change also all reference to helloworld variables and algortithm

 [nimbix@JARVICENAE-0A0A1860 hw]$ diff newaction_hardware.H

../../hls_helloworld/hw/action_uppercase.H

25c25

< #include <newaction_commonheader.h> /* HelloWorld Job definition */

 P a g e 11

SNAP Framework built on Power™ CAPI technology February 22th, 2018

> #include <action_changecase.h> /* HelloWorld Job definition */

38,39c38,39

< newaction_job_t Data; /* up to 108 bytes */

< uint8_t padding[SNAP_HLS_JOBSIZE - sizeof(newaction_job_t)];

> helloworld_job_t Data; /* up to 108 bytes */

> uint8_t padding[SNAP_HLS_JOBSIZE - sizeof(helloworld_job_t)];

Check that everything is ok by typing:

make

You should get :

 P a g e 12

SNAP Framework built on Power™ CAPI technology February 22th, 2018

4. Build a simulation model and execute it

Once the changes done in the different files, let’s see if everything is ok by building a simulation model:

cd ~/snap

make model

cd hardware/sim

./run_sim

Once the simulation window is opened you should be able to execute the discovery mode by typing

snap_maint -v. If you have followed corretlty the previous changes then your action should be

identified as you defined it in ActionTypes.md file

Calling then snap_newaction will show you the hls_helloworld information as we can expect it since we

didn’t change anything from the copied file

 P a g e 13

SNAP Framework built on Power™ CAPI technology February 22th, 2018

5. Deploy on P8 Machine

Deployment will be run as in the general case.

However unless your example is pushed into “snap” github repository, you’ll have to transfer the files on

the new machine using /data common directory if you use Nimbix, or by any mean of your choice.

For example “snap_maint” snap tool won’t associate your new NEWACTION_TYPE number if it is not

available in the snap repository.

 P a g e 14

SNAP Framework built on Power™ CAPI technology February 22th, 2018

ANNEX 1 : Add a New Action in the Kconfig menu

NOTE: we keep the fact that we copied the hls_helloworld action and will so keep the same resources.

1. Edit ~/snap/scripts/Kconfig to add the resources used which will be displayed in the menu

2. Edit ~/snap/snap_env to add the path to the newaction

You will notice that no SDRAM nor NVMe resources are displayed here since we disabled them in the

kconfig file

