¥

J
CAP! EESEE A
g

IBM CAPI SNAP framework
Version 1.0

How to Create a New Action in SNAP environment.

The Guide describes how to create a new action in SNAP environment.

Overview

Let’s imagine that you want to create a new action for which files used will be as follow:

- Application =>» snap_newaction.c Directory: actions/hls_newaction/sw
- Software action =>» newaction_software.c Directory: actions/hls_newaction/sw
- Hardware action =>» newaction_hardware.cpp Directory: actions/hls_newaction/hw

- Common header file = newaction_commonheader.h Directory: actions/hls_newaction/include

The simplest is to start from an existing example that contains the same interfaces to external
resources you need. This will setup all the access you will need for your algorithm.

We will use the Nimbix cloud environment to illustrate the changes but this can be easily translated to
any other environment.

This document will succesfully go through the following items:

- install and setup the SNAP environment

- create a newaction action by duplicating and adapting an existing action
- run a modelization of the new action

Related documentation

Quick Start Guide on a General environment
How to debug an issue in SNAP environment
How to optimize a function in SNAP environment

Can be found in https://github.com/open-power/snap/doc

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Pagel

https://github.com/open-power/snap/doc

i

7
CAP! 6
A=/
Contents

OVEIVIBW ..ttt ettt ettt e e s ettt e e e e s e e et e e e e e s e b bbb et e e e e e sa s se b e e eeeee e e e s sbeeeeeeeeeaannseneeeeeeseenannnnnes 1

I 1 VT oY T 04 U= o A =T « PP 3

2. Choose an NEWACTION_TYPE id so that your action will be identifiedcccoccoeviniiinnnnnen. 4

3. Copy and adapt an existing action example to a new action................cccooeciiiiiii e 5

4. Build a simulation model and eXecute itcocoiiiiiiiiiiiii e 12

5. Deploy ON P8 IMAChINGcceuiiiiiiecc ettt e e tte e e et e e e et e e e e e bae e e s e btaeeeabaeeeeaanes 13

ANNEX 1 : Add a New Action in the Kconfig menu ..o 14

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Page 2

February 22th, 2018

CAPI

J

1. Environment setup

Power Systems

Let’s first install the SNAP framework that can be downloaded from github:

cd
git clone
cd ~/snap

cp ~/snap.env.sh .
make snap config

(<=

Nimbix specific)

Choose the card that will contain the resources you need

Card Type
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <?> for additional information about this

()
()

Nallatech 250S with 4GB DDR4 SDRAM,
Nallatech 250S+ with 4GB DDR4 SDRAM, NVMe and Xilinx KU
|(X)fAlphaData KU3 Card with Ethernet, 8GB DDR3 SDRAM and Xi
() Semptian NSA121B Card with Ethernet, 8GB DDR4 SDRAM and

NVMe and Xilinx KU6

< Help >

then select HLS Action type.

BAR>.

Action Type o
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
Press <?> for additional information about this

)

) HDL Example
) HLS Memcopy
) HLS Sponge

) HLS Hashjoin

—— e~ —

[ﬂ] HLS Action - manually set ACTION ROOT in snap_env.sh!
HDL Action - manually set ACTION_ROOT in snap_env.sh!

< Help >

Select then the different resources of the card you have selected and that you need to use for your

algorithm (ADKU3 on left — N250S on right)

Kernel Configuration

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty

submenus ----). Highlighted letters are hotkeys. Pressing <Y>
selectes a feature, while <N> will exclude a feature. Press
<Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] feature

Card Type (AlphaData KU3 Card with Ethernet, 8GB DDR3 SDRAM a

Action Type (HLS Action - manually set ACTION_ROOT in snap_en
e [ll] Enable SDRAM (NEW)

[] Enable BRAM (replacing SDRAM for experimental use) (NEW)
Simulator (xsim) --->
ol Advanced Options:
[] Enable ILA Debug (Definition of $ILA_SETUP_FILE required)
[] Create Factory Image
[] Cloud build (enabling Partial Reconfiguration)

o

< Exit > < Help > < Save > < Load >

Kernel Configuration

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty

submenus ----). Highlighted letters are hotkeys. Pressing <Y>
selectes a feature, while <N> will exclude a feature. Press
<Esc><Esc> to exit, <7?> for Help, </> for Search. Legend: [*] feature

Card Type (Nallatech 250S with 4GB DDR4 SDRAM, NVMe and Xilin

Action Type (HLS Action - manually set ACTION_ROOT in snap_en
-—»ﬂ] Enable SDRAM (NEW)

[] Enable BRAM (replacing SDRAM for experimental use) (NEW)
—»[] Enable NVMe (NEW)

Simulator (xsim) --->
.

Ry

Advanced Options:
[] Enable ILA Debug (Definition of $ILA SETUP_FILE required)
[] Create Factory Image

[] Cloud build (enabling Partial Reconfiguration)

< Exit > < Help > < Save > < Load >

SNAP Framework built on Power™ CAPI technology

Page 3

https://github.com/open-power/snap

J

CAPI

175\
=

VERY IMPORTANT:
Be coherent with the resources you are selecting. If you select the SDRAM or NVMe, you will need to
ensure that they are enabled in the hardware action ports (function hls_action of the hardware action).

It makes sense as SNAP will attach the physical hardware drivers you selected to your action.

On Nimbix, don’t forget to select the Cloud Build option

sk : , Advanced Options:
ﬂ] Cloud build (enabling Partial Reconfiguration)
[
[

] Enable ILA Debug (Definition of $ILA SETUP_FILE required)
] Create Factory Image (NEW)

After exiting the snap_config, you should get the following screen if this is the first time you use the
snap_config, otherwise you may have ACTION-ROQT set to the previous configuration

=====5imulation setup: Checking path to PSLSE

PSLSE_ROOT is set to: "/home/nimbix/pslse”
=====ACTION ROOT setup======s===========================
Setting ACTION_ROOT t

=====PR flow setup====s================================
DCP_ROOT is set t /data/snap.20171219 21i"

=====Content of Snap_env,5h::::::::::::::::::::::::::::
export PSLSE_RO0T=/home/nimbix/pslse
export DCP_R00T=/data/snap.20171219 211

export PSL_DCP=/opt/IBM/snap-hdk/CAPI_SNAP_${FPGACARD}_ PSL/Checkpoint/b_route_de
sign.dcp

INFO ### Cloud user flow 1s skipping PSL_DCP check

Thefoltlowing-environment variables need to get defined:
ACTION_ROOT

Please edit snap_env.sh and add the correct values

SNAP config done

Edit ~/snap/snap_env.sh and add the path to the new action directory

/home/nimbix/pslse
/data/snap.20171219 211

/opt/IBM/snap-hdk/CAPI_SNAP_ _PSL/Checkpoint/b_route_de

/home/nimbix/snap/actions/hls_newaction
From snap directory type :

WEL LRI g =ba= t0 make sure we have all the libs prepared for next “make” steps

2. Choose an NEWACTION_TYPE id so that your action will be identified

Edit ~snap/ActionTypes.md and pick up a new number in the file. Let’s get for example 00.00.00.01. You
will be able to keep it for your internal use or follow the process explained at the bottom of this
document to get a unique number.

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Page 4

17~
p=

Action Type Assignment
Vendor | Range Start | Range End | Description

free | 00.00.00.01 | 00.00.00.01 | HLS My New Action

free-| 00.00.00.02 | 00.00.FF.FF | Free for experimental-gse
IBM | 10.14.00.00 | 10.14.00.00 | SNAP framework example
IBM | 10.14.00.01 | 10.14.00.01 | HDL NVMe example

A o

3. Copy and adapt an existing action example to a new action

3.1 Copy an existing hls example

Let’s take the hls_helloworld as the example from which we will start from. You can take any of the
examples or even create a new one copying the different Makefile and the stucture of directories.

actions

-r hls helloworld hls newaction

hls newaction

doc/* # <= cleaning unrelated stuff
tests/* # <= cleaning unrelated stuff

3.2 Adapt the example : include directory

(cd ~/snap/actions/hls newaction)
cd include

Rename the copied header file to newaction_commonheader.h. You should so have

[nimbix@JARVICENAE-0AOAI856 include]$ mv action changecase.h
newaction commonheader.h

[nimbix@JARVICENAE-0QAQAI856 include]S 1s
newaction commonheader.h

Edit this file and you will have to adapt the following things:

- ACTION_TYPE value =» change the name to NEWACTION_ACTION_TYPE and set its value to the
one you choosed in the ActionTypes.md file. Let’s say you took for example 00.00.00.01

- You will also have to change the structure name to newaction_job and its content to the data
you have decided to exchange between the application and the action.

newaction_job {
snap_addr in;

snap_addr out;
} newaction_job_t;

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Page5

d

J
CAPI

Don’t also forget to update the following:

- change the #ifndef/#define at the beginning of the file newaction_commonheader.h.
- later, don’t forget to change also all reference to helloworld variables and algorithm

NiceToHave:
=>» If you want to have your action appearing in the kconfig menu, see Annex 1 of this document.

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Page 6

" J —

CAP! =
Power Systems

17~
p=

3.3 Adapt the example : sw directory

cd ../sw
Rename the copied action file to newaction_software.c and the application file to snap_newaction.c.

You should so get :
[nimbix@JARVICENAE-0AQOA1856 sw]$ mv action lowercase.cC

newaction software.c
[nimbix@JARVICENAE-0AOA1856 sw]$ mv snap helloworld.c

snap newaction.c
[Nnimbix@JARVICENAE-0QAQA1856 sw]$ 1s

Makefile newaction software.c README.md snap newaction.c

Edit Makefile and update the name of the software action file(s) (newaction_software.o) and the name

of the application (snap_newaction)

Don’t forget to update the following:

- in newaction_software.c file
change the include to newaction_commonheader.h and

o

o change all references (1 occurrence) to HELLOWORLD_ACTION_TYPE variable to
NEWACTION_ACTION_TYPE

o change all references (2 occurrences) to helloworld_job by newaction_job

o later, don’t forget to change also all reference to helloworld variables and algortithm

[nimbix@JARVICENAE-0QAOA1860 sw]$ diff newaction software.c
/hls helloworld/sw/action lowercase.c

36c36
< #include <newaction commonheader.h>

> #include <action changecase.h>
58c58
struct newaction job *js = (struct newaction job *)job;

struct helloworld job *js = (struct helloworld job *)job;

= NEWACTION ACTION TYPE, // Adapt with your ACTION NAME

.action type

= HELLOWORLD ACTION TYPE, // Adapt with your ACTION NAME

.action type

- insnap_newaction.c file
change the include to newaction_commonheader.h and

o
o change all references to helloworld_job by newaction_job
o later, don’t forget to change also all reference to helloworld variables and algortithm

SNAP Framework built on Power™ CAPI technology Page7

February 22th, 2018

)
Power Systems N

[nimbix@JARVICENAE-0AOA1860 sw]$ diff snap newaction.c

../../hls helloworld/sw/snap helloworld.c

38c38 B

< #include <newaction commonheader.h>

> #include <action changecase.h>

82,83c82,83 B
"SNAP_CONFIG=FPGA $ACTION ROOT/sw/snap newaction -i /tmp/tl -o /tmp/t2\n"
"SNAP CONFIG=CPU $ACTION ROOT/sw/snap _newaction -i /tmp/tl -o /tmp/t3\n"

"SNAP CONFIG=FPGA $ACTION ROOT/sw/snap helloworld -i /tmp/tl -o /tmp/t2\n"
"SNAP CONFIG=CPU $ACTION ROOT/sw/snap helloworld -i /tmp/tl -o /tmp/t3\n"

struct newaction job *mjob,
struct helloworld job *mjob,
struct newaction job mjob;
struct helloworld job mjob;

action = snap attach action(card, NEWACTION ACTION TYPE, action irqg, 60);

action = snap attach action(card, HELLOWORLD ACTION TYPE, action irq, 60);

Check that everything is ok by typing

make

if you have “....pslse/libcxl/libex].h:21:22: error: misc/cxl.h: No such file or directory” error, you can run a
make software from the snap directory, this will compile the libcxl library. Then come back in /sw
directory and run make again.

You should get:

[nimbix@JARVICENAE-QAQAI860 sw]$ 1s
Makefile newaction software.o snap newaction

newaction software.c README.md snap newaction.c

Then execute the action

./snap newaction

[nimbix@JARVICENAE-0AOA1844 sw]$./snap_newaction
Usage: ./snap_newaction [-h] [-v, --verbose] [-V, --version]
-C, --card <cardno> can be (0...3)
-1, --input <file.bin> input file.
-0, --output <file.bin> output file.
-type-in <CARD_DRAM, HOST_DRAM, ...>.

-addr-in <addr> address e.g. in CARD_RAM.
-type-out <CARD_DRAM,HOST_DRAM, ...>.

-addr-out <addr> address e.g. in CARD_RAM.

-size <size> size of data.

-timeout timeout in sec to wait for done.
-verify verify result if possible
--no-1irq disable Interrupts

Simple example to test it is for example

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Page 8

CAPI ~

echo “hello World. This is my first CAPI SNAP experience.” > /tmp/t1l
SNAP_CONFIG=CPU ./snap_newaction -i /ftmp/tl -0 /tmp/t2

cat /tmp/tl

hello World. This is my first CAPI SNAP experience.”

cat /tmp/t2

hello world. this is my first capi snap experience.”

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Page9

<7
CAP! S=55E
Power Systems

17~
p=

3.4 Adapt the example : hw directory

Change the name of your files to the new names. You should then get

[nimbix@JARVICENAE-0A0A1860 hw]S Is

Makefile newaction_hardware.cpp newaction_hardware.H README.md
Edit Makefile and change the name of the hardware action file (newaction_hardware.cpp), the name of
the directory where Vivado HLS will generate your vhdl code (hlsNewAction) and the name of your
action as the solution_name (newaction). These 2 last names can be set to anything since they are just

internal names that user doesn’t need to take care of.

[nimbix@JARVICENAE-0AOAI860 hw]s$ diff Makefile ../../hls helloworld/hw/Makefile

40,42c40,42

< SOLUTION NAME ?= newaction

< SOLUTION DIR ?= hlsnewaction
< srcs += newaction hardware.cpp # hardware action file

internal name can be everything
internal name can be everything

> SOLUTION NAME ?= helloworld
> SOLUTION DIR ?= hlsUpperCase
> srcs += action uppercase.cpp

Don’t forget to update the followings:

- inaction_hardware.cpp file
o change the include to action_hardware.H and
change all references to HELLOWORLD_ACTION_TYPE variable to

NEWACTION_ACTION_TYPE
later, don’t forget to change also all reference to helloworld variables and algortithm

O

[nimbix@JARVICENAE-0QAOAI860 hw]$ diff newaction hardware.cpp
./hls helloworld/hw/action uppercase.cpp

< #include "newaction hardware.H"

> #include "action uppercase.H"

111clll
Action Config->action type = NEWACTION ACTION TYPE; //TO BE ADAPTED

Action Config->action type = HELLOWORLD ACTION TYPE; //TO BE ADAPTED

- inaction_hardware.H file
change the include to newaction_commonheader.h and

o
o change all references to helloworld_job_t by newaction_job_t

o update the #ifndef/#define at the beginning of the file.

o later, don’t forget to change also all reference to helloworld variables and algortithm

[nimbix@JARVICENAE-0AOA1860 hw]s$ diff newaction hardware.H
./hls helloworld/hw/action uppercase.H

Page 10

February 22th, 2018 SNAP Framework built on Power™ CAPI technology

CAP! ~

> #include <action changecase.h> /* HelloWorld Job definition */
38,39¢c38,39

newaction job t Data; /* up to 108 bytes */

uint8 t padding[SNAP HLS JOBSIZE - sizeof (newaction job t)];

helloworld job t Data; /* up to 108 bytes */
uint8 t padding[SNAP HLS JOBSIZE - sizeof (helloworld job t)];

Check that everything is ok by typing:

You should get :

[nimbix@JARVICENAE -0OADAL1844 hwl$ 1s
action_hardware. cpp Makefile vivado_hls. log
action hardware.H README . md

run_hls _script.tcl
P =

name you have chosen for the SOLUTION_DIR

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Page 11

4

7
CAP!

A
o
4. Build a simulation model and execute it

Once the changes done in the different files, let’s see if everything is ok by building a simulation model:

cd ~/snap
make model
cd hardware/sim
./run_sim

Once the simulation window is opened you should be able to execute the discovery mode by typing
snap_maint -v. If you have followed corretlty the previous changes then your action should be
identified as you defined it in ActionTypes.md file
‘nimbix@)JARVICENAE-OAOA1844:~/snap/hardware/sim/ *+ - O X
NAP_DEV_RELEASE=devel
nimbix@JARYVICENAE-OROALS44 20171219_151834]3 snap_maint -
NFO:Connecting to host ‘JARVICENAE-OAOALE44" por
MAP on N250S Card, NVME disabled, O MB SRAM available, }
MAP FPGA Release: v1,2,2 Distance: 0 GIT: OxeBddfEED
NAP FPGA Build (Y/H/D): 2017712719 Time (HiM): 14:37

NAP FPGA CIR Master: 1 My ID: O [
MAP FPGA Up Time: O sec }

0 Max AT: 1 Found AT: 0x00000001 --2> Assis stt—FAfs—0
0 0x 00000001 0x0000002%" free HLS My Mew Action
NFO:detach response from from pslse
nimbix@JARYICENAE-0AOA1S44 20171219 15183415]

Calling then snap_newaction will show you the hls_helloworld information as we can expect it since we
didn’t change anything from the copied file

[nimbixRIARYICEMAE-0A0A1844 20171219_151834]% snap_newaction -h
Usage: snap_newaction [-h] [-v, --verbose] [-V, --version]

-C, --card <cardno? can be (0,,.3)

=i, —=input <file.,bin> input file,

-0, —-—output <file,bin> output file,

-A, —-type-in <CARD_DEAM, HOST_DRAM, ...>.

-a, ——addr-in <addr> address e,q, in CARD_RAHM,

=0, —-type-out <CARD_DRAM,HOST_DRAM, ...>.

-d, --addr-out <addr> address e,q, in CARD_RAM,

-z, —-zize {sizer zize of data,

-t, ——timeout timeout in sec to wait for done,
=%, ——verify verify result if possible

N, --no-irqg dizable Interrupts

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Page 12

4

-/
CAP!

===7= M)
Power Systems 2

5. DepEy on P8 Machine

Deployment will be run as in the general case.

However unless your example is pushed into “snap” github repository, you’ll have to transfer the files on
the new machine using /data common directory if you use Nimbix, or by any mean of your choice.

For example “snap_maint” snap tool won’t associate your new NEWACTION_TYPE number if it is not
available in the snap repository.

February 22th, 2018 SNAP Framework built on Power™ CAPI technology Page 13

CAPI

J

)

Power Systems N

ANNEX 1 : Add a New Action in the Kconfig menu

NOTE: we keep the fact that we copied the hls_helloworld action and will so keep the same resources.

1.

Edit ~/snap/scripts/Kconfig to add the resources used which will be displayed in the menu

config HLS_| WORLD
bool "HLS HelloWorld"
select ENABLE_HLS_SUPPORT
select DISABLE_SDRAM_AND_ BRAM
select DISABLE_NVME

config HLS_NEWACTION
bool "HLS NewAction"
select ENABLE_HLS_SUPPORT
select DISABLE_SDRAM_AND_BRAM

2.

select DISABLE_NVME

Edit ~/snap/snap_env to add the path to the newaction

Action Type 1
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <7?> for additional information about this

() HLS Search

() HLS Breadth First Search
() HLS Intersect

() HLS NVMe Memcopy

() HLS HelloWorld
an

HLS NewAction

< Help >

You will notice that no SDRAM nor NVMe resources are displayed here since we disabled them in the
kconfig file

February 22th, 2018

Kernel Configuration

submenus ----). Highlighted letters are hotkeys. Pressing <Y>
selectes a feature, while <N> will exclude a feature. Press
<Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] feature

Card Type (Nallatech 250S with 4GB DDR4 SDRAM, NVMe and Xilin
| | Action Type (HLS NewAction) ---

Simulator (xsim) --->
K e

[*] Cloud build (enabling Partial Reconfiguration)
[*] Cloud user flow
[*] Build bitstream file

< Exit > < Help > < Save > < Load >

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty

SNAP Framework built on Power™ CAPI technology

Page 14

