
Eidetic Communications Inc. 3553 31st NW, Calgary, Alberta T2L 2K7 www.eideticom.com info@eideticom.com

NVMe to AXI Bridge

Technical Description

http://www.eideticom.com/

Eideticom NVMe Technical Description

Rev 4 2018-02-01 2 of 9
`

Table of Contents

1 Introduction ... 3
2 System Overview ... 3

2.1 Eideticom NVMe Host ... 4

2.2 Buffer memory layout .. 5
2.3 AXI Interconnect Memory Mapping.. 5
2.4 NVMe Host Address Space.. 6

2.4.1 NVMe Host Action Registers ... 6

2.4.2 Admin Registers .. 7

3 Programming Guide .. 8
3.1 Initialization sequence .. 8

3.2 Action Command Sequence ... 8

Eideticom NVMe Technical Description

Rev 4 2018-02-01 3 of 9
`

1 Introduction
This document provides a technical description of the Eideticom NVMe to AXI Bridge. This design is part

of the OpenPOWER CAPI SNAP accelerator framework. The NVMe to AXI bridge is used to access data

on attached NVMe SSD’s. The focus of the document is on the NVMe host subsystem and how to

program the NVMe host to transfer data to or from the attached SSD’s from or to the onboard DDR

memory.

2 System Overview
The NVMe to AXI bridge system is shown below in Figure 1. The system consists of an Eideticom NVMe

Host System, Xilinx PCIe Root Complexes, and Xilinx AXI interconnect blocks.

Figure 1: NVMe To AXI Bridge

Eideticom NVMe Technical Description

Rev 4 2018-02-01 4 of 9
`

2.1 Eideticom NVMe Host
The Eideticom NVMe Host system is shown below in Figure 2. This system is responsible for receiving

data transfer commands from the CAPI Action Framework and issuing the necessary NVMe requests and

receiving the NVMe responses in order to transfer the data to or from the NVMe SSD drives.

The Tx Buffer is used for submission queues and admin command tx data. The Rx Buffer is used for

completion queues and for admin command rx data. The completion FSM manages the completion

queues and the submission FSM manages the submission queues.

Admin submission queue entries and Tx command data are written directly to the Tx Buffer using the

MMIO/Action AXI interface. Admin completion queue entries and Rx command data are read directly

from the Rx Buffer using the MMIO/Action AXI interface.

IO submission entries are automatically written to the Tx Buffer by the Submission FSM when a IO

command is written using the MMIO/Action AXI interface. IO completion entries are interpreted by the

Completion FSM and the completion status is available from the MMIO/Action AXI interface.

Figure 2: NVMe Host System

Eideticom NVMe Technical Description

Rev 4 2018-02-01 5 of 9
`

2.2 Buffer memory layout
The buffer memory layouts are listed in the tables below. Each of the Tx submission queue entries is 64

bytes in length. Each of the Rx completion queue entries is 16 bytes in length. The PCIE virtual address

should be the value used to initialize the queue addresses in the NVME SSD. The PCIE virtual addresses

will be automatically mapped to the correct physical address by the NVME host logic.

Table 1 Tx Buffer Layout

Start Address PCIE Virtual Address Memory Region

0x6f00 0x28000000 Admin Tx Data (4 kB)

0x3880 0x20000000 IO SQ SSD1 (218 entries)

0x3780 0x18000000 Admin SQ SSD1 (4 entries)

0x100 0x10000000 IO SQ SSD0 (218 entries)

0x0 0x08000000 Admin SQ SSD0 (4 entries)

Table 2 Rx Buffer Layout

Start Address PCIE Virtual Address Memory Region

0x1bc0 0x50000000 Admin Rx Data (8 kB)

0xe20 0x48000000 CO SQ SSD1 (218 entries)

0xde0 0x40000000 Admin CQ SSD1 (4 entries)

0x40 0x38000000 IO CQ SSD0 (218 entries)

0x0 0x30000000 Admin CQ SSD0 (4 entries)

2.3 AXI Interconnect Memory Mapping
The MMIO/Action AXI addresses are mapped to locations below.

Address Memory Region

0x0000 NVMe Host

0x1000 PCIe Config Root Complex 0

0x2000 PCIe Config Root Complex 1

The NVMe Host to PCIe AXI addresses are mapped to the locations below. These locations are accessed

using the NVMe Host ADMIN_PCIE_ADDR and HOST_PCIE_DATA registers.

Address Memory Region

0x0000 PCIe Root Complex 0 PCI Space

0x2000 PCIe Root Complex 1 PCI Space

The PCIe to AXI addresses are mapped to the locations below. These locations are accessed by the PCIE

SSD’s based on the NVMe command they are processing.

Eideticom NVMe Technical Description

Rev 4 2018-02-01 6 of 9
`

Address Memory Region

0x0000_0000_0000_0000 NVMe Rx Buffer

0x0000_0002_0000_0000 DDR Access

2.4 NVMe Host Address Space
The NVMe Host address space is mapped as below.

Address Memory Region

0x00 NVMe Host Action Registers

0x80 NVMe Host Admin Registers

0x100 NVMe Host Buffer Data
(HOST_BUFFER_DATA)

0x104 NVMe Host PCIe Data
(HOST_PCIE_DATA)

2.4.1 NVMe Host Action Registers
These registers are used by the action for sending commands to read and write data, and for requesting

the status of issued commands.

Table 3 Action Write Registers

Offset Register Description

0x0 DPTR_LOW Transfer data pointer low 32 bits

0x4 DPTR_HIGH Transfer data pointer high 32 bits

0x8 LBA_LOW SSD LBA low 32 bits

0xC LBA_HIGH SSD LBA high 32 bits

0x10 LBA_NUM Number of LBA blocks in transfer

0x14 COMMAND Command Register. Writing to
this location starts the data
transfer.

Table 4 Action Read Registers

Offset Register Description

0x0 STATUS Command completion status for
all 16 action fifos and submission
queue full flags.

0x4 TRACK_0 Action ID[0] status fifo

0xN*4 + 4 TRACK_N Action ID[N] status fifo

0x40 TRACK_15 Action ID[15] status fifo

Eideticom NVMe Technical Description

Rev 4 2018-02-01 7 of 9
`

2.4.1.1 Action Command Register

Writing to the action command register will start the data transfer. The bits of this register are defined

below.

Bits Assignment Meaning

3:0 CMD_TYPE 0 == Read SSD Command
1 == Write SSD Command
2 == Admin Command

7:4 CMD_QUEUE_ID 0 == SSD0 Admin Q
1 == SSD0 IO Q
2 == SSD1 Admin Q
3 == SSD1 IO Q

11:8 CMD_ACTION_ID Action ID for command

31:12 RESERVED

2.4.1.2 Action Status Register

Bits Assignment Meaning

3:0 Submission Queue Full Bit 0 – 1 == SSD0 Admin Q Full
Bit 1 – 1 == SSD0 IO Q Full
Bit 2 – 1 == SSD1 Admin Q Full
Bit 3 – 1 == SSD1 IO Q Full

16 Action 0 FIFO Status 0 == Action 0 FIFO empty
1 == Action 0 FIFO has data

16+N Action N FIFO Status 0 == Action N FIFO empty
1 == Action N FIFO has data

31 Action 15 FIFO Status 0 == Action 15 FIFO empty
1 == Action 15 FIFO has data

2.4.1.3 Action Track Registers

Offset Register Description

0x4 TRACK_0 Bit 0 – ‘1’ Action 0 command complete (self-clearing)
Bit 1 – ‘1’ Action 0 command returned error (self-clearing)
Bits 31:2 -- Reserved

0xN + 4 TRACK_N Action ID[N] status as above

0x40 TRACK_15 Action ID[15] status as above

2.4.2 Admin Registers

Offset Name Assignment

0x0 ADMIN_CONTROL Bit 0 – Enable NVMe Host
Bit 1 – Enable Auto-increment Addressing
Bit 2 – Clear Error Status

0x4 ADMIN_STATUS Bit 0 – NVMe Host Ready
Bit 1 – Error Condition Detected
Bit 2 – Admin Command to SSD0 Complete

Eideticom NVMe Technical Description

Rev 4 2018-02-01 8 of 9
`

Bit 3 – Admin Command to SSD1 Complete

0x8 ADMIN_BUFFER_ADDR Buffer address for accessing buffer data.

0xC ADMIN_PCIE_ADDR PCIe address for accessing PCIe space.

0x10 ADMIN_NSID NVMe Namespace ID to be used for action
commands

0x14 ADMIN_ASQ_INDEX Admin submission queue indexes.
Bits 7:0 => SSD0 Admin Submission Queue
Index
Bits 23:16 => SSD1 Admin Submission Queue
Index

0x18 ADMIN_SCRATCH Admin scratch register. Read and writing has
no effect on NVMe functionality.

3 Programming Guide

3.1 Initialization sequence
This sequence needs to be performed after system power on and anytime after any SSD changes are

made to the system. After this sequence is complete the NVME to AXI Bridge is ready to receive data

transfer commands from the action interface.

1) Wait until the NVMe host ready bit is set in the ADMIN_STATUS register.

2) Set the enable NVMe host bit in the ADMIN_CONTROL register.

3) Set up the PCIe root complexes using the MMIO interface to write to the PCIe Root Complex

Config address spaces.

4) Set up the SSD PCIE registers using the NVME host registers ADMIN_PCIE_ADDR and

HOST_PCIE_DATA.

5) Write the admin submission queue entry to the Tx Buffer using the NVME host registers

ADMIN_BUFFER_ADDR and HOST_BUFFER_DATA.

6) If the command needs to send data, such as a set features command, write the data to the Tx

Buffer using the NVMe Host registers ADMIN_BUFFER_ADDR and HOST_BUFFER_DATA.

7) Write to the COMMAND register to start the command.

8) Poll the ADMIN_STATUS register until command is completed.

9) Read the completion queue entry from the Rx Buffer using the NVME host registers

ADMIN_BUFFER_ADDR and HOST_BUFFER_DATA.

10) If the command returns data, such as an identify command, read the data from the Rx Buffer

using the NVMe Host registers ADMIN_BUFFER_ADDR and HOST_BUFFER_DATA.

3.2 Action Command Sequence
This sequence is used by the action interface to transfer data to or from the attached SSD’s from or to

the onboard DDR memory. This sequence can be re-issued in parallel by any of the 16 action kernels

and the data transfer will happen for all sequences concurrently. A action kernel can issue several

command in sequence and the returned status completion will occur in the sequence in which the

commands were issued.

Eideticom NVMe Technical Description

Rev 4 2018-02-01 9 of 9
`

1) Ensure that there is space in the IO submission queue by checking the relevant bits in the

STATUS registers in the action address space.

2) Program the DPTR_LOW register in the action address space with the low 32 bits of the DDR

memory location of the source or destination data.

3) Program the DPTR_HIGH register in the action address space with the value 0x00000002 + bit 32

of the DDR memory location of the source or destination data.

4) Program the LBA_LOW register in the action address space with the low 32 bits of the SSD LBA

being accessed.

5) Program the LBA_HIGH register in the action address space with the high 32 bits of the SSD LBA

being accessed.

6) Program the LBA_NUM register in the action address space with the number of LBA blocks that

will be transferred.

7) Set the CMD_TYPE in the COMMAND register data to reflect whether the access is a transfer to

(write) or from (read) the SSD drive.

8) Set the CMD_QUEUE_ID in the COMMAND register data to reflect which attached SSD is to be

accessed.

9) Set the CMD_ACTION_ID in the COMMAND register data to the action kernel ID that is issuing

the command. This value will be used to determine which status FIFO will signal the command

completion.

10) Write the COMMAND data to the COMMAND register. This will start the command.

11) Wait for command completion. There are two options.

a. Poll the STATUS register in the action address space until the bit location equal to the

action kernel id is ‘1’. Next read the relevant TRACK_N register to get the completion bit

(bit 0) and the error status bit (bit 1) for the command.

b. Or: Poll the relevant TRACK_N register until a ‘1’ is read from the completion bit (bit 0).

The error status will be returned in bit 1.

