J
CAP!

)
(e

IBM CAPI SNAP framework
Version 1.0

How to optimize a function in SNAP environment.

The Guide describes how to measure and optimize the code of a function in SNAP environment.

In a first step, you have ported your code to a FPGA. In a second step, you need to see how to optimize
it. The final performance depends on the way you will write your code. This is very similar to what we do
for software. The difference is in the concepts used for optimizing FPGA performance.

Overview

Let’s use the very simple example hls_helloworld to learn how we can measure the time spent by the
function, also called “hardware action”, and how to optimize it. This example is so basic that you will not
get much from it, but you will hopefully understand the concept. As soon as you understand these basic
points, you can try to port and optimize the sponge/SHA3 code which will give you more experience
about issues you might face and how to solve them (see related Application Note in
https://github.com/open-power/snap/doc).

The last part of this document is key to understanding the different “times” reported and what they
represent. It will explain the overhead added to access the FPGA and should help you understand when
offloading a function becomes interesting or not.

We will use the Nimbix cloud environment to illustrate the issues and their resolutions, but this can be
easily translated to any other environment.

Notice that we use a HLS (High Level Synthesis) tool in this example, because it provides a fast way to
generate your own hardware implementation from a C/C+ code. Amongst others, the Xilinx Vivado HLS
tool was selected since it is one that better enables those users who have less hardware knowledge. You
can easily use the other HLS tools provided by other providers (Stratus from Cadence, ...) as long as the
tool can generate HDL (Verilog, VHDL, ...) code.

This document has been built using snap git release tag v1.3.2. It can certainly work also for new
releases.

This document will successfully go through the following items:

- understand where to find and set parameters that can impact the time spent by your function.
- how to identify in which function most time is spent

- find a path for improvement

- try optimizations and compare performance results

- understand the difference in time reported by application and actions.

SNAP Framework built on Power™ CAPI technology Page

February 15th, 2017 1

CAPI 7

Contents
OVEBIVIBW ..ttt ettt ettt st e s et e s b et e s s b et e s s s b e e e s s abe e e s s b be e e s s eabae e s ssabaeessnraees 1
{07 T 01 (=T 01 (PP PPPTTPTTPO 2
1. The helloworld @XampPle ..o estr e e et e e s st e e e e seaaeeeeesaseeesannreeeean 3
2. How and where to find key data?............ccoooiiiiiiiiiiiicie e 4
2.1 OPENING VIVAAO HLS ...ttt ettt e e e e tee e s ettt e e e e eabe e e s e abteeeeeabeneeennreeas 4
2.2 Understanding parameters preset by SNAP SCHPLS.....cccuiiiiiiieeiiiieeerieeeesree e esiee e sree e 5
2.3 LoOKING fOr KEY CONSTIAINTS .. .uviiiiiiiiieecceee et e e st e e e et e e e e e abe e e e enbaee e eenreeas 7
2.4 Looking for key data for MeasUrEmMENTocuuiiiiiiie e 8
2.5 Looking for potential improvement in the code.........oooiiiiriiiiiccceee e 9
3. Measuring and optimizing hls_helloworld hardware action................ccccccoecviiiiiiiiiiniiee e 10
3.1 Measure latency of a design with “No optimization”cccceeeeiiiii e, 10
3.2 Optimization instructions provided by VIivado HLScoiiiiiiiiiiciiee e 11
3.2.1 Hpragma HLS UNROLL (fACLOIr=2) ...eeiieiieee ettt et e e e e e 12
3.2.2 HPragma HLS PIPELINEoeueiiiiiiiiiiieiititeetiettteeettbeiateeeiabebebababsbabababaasbssaessasasssssssssssssssannnnnes 13
33 Measure latency of a design with an UNROLL instruction in @ loop.....cccccceecveeeecciieececiiee e, 14
3.4 Measure latency of a design with a PIPELINE instruction in @ loop.....cccccveeeeeeeiiciiiieeeee e e 15
3.5 Measure latency of a design with a PIPELINE instruction inside the top main loop 16
4. What represents the times values measured?.............coooovvieiiiiiiiiiiiiiieiee e 18
41 What is included in the time reported by the application running the action on a real FPGA? 18
4.2 Understand what ShOws @ SIMUIGTOTcoviiiiiiiiiie e 19
4.3 Step 1: Write all registers to the action (MMIO)uuviiiiiiiiieee e 20
4.4 Step 2: Start the action, and process the data with the hardware action........ccccccoeevvveeecnneennn. 21
4.5 Step 3: Handle the completion SIgNal...........oooeuiiiiicciiii e e 22
4.6 Step 4: Read all registers of the action (MIMIO)c.coocuiiiiiiecciiece et 23
4.7 Conclusion: is the overhead always harmful?oooviiiiriiii e 24
T V1 111 T] o VPSR PTUUR TSP 25
Page

SNAP Framework built on Power™ CAPI technology
February 15th, 2017 2

CAPI
—eesem

1. The helloworld example

Before starting to dive into details, let us quickly explain what the example we are using is doing.

The SNAP helloworld sample application consists of a software part running on the host as well as a
SNAP action which is executed with on the FPGA. The code running on the host-system opens a file,
places the data into an input memory buffer, opens a SNAP context and triggers the SNAP action on the
card to perform the data processing.

Once the SNAP hardware action receives the order to start the job, it will transfer the data from the
input memory buffer into the FPGA, does the requested processing, e.g. converting characters to upper
case, and transfer the results back into the provided output memory on the host.

The host application waits for the SNAP hardware action to complete, e.g. by using an interrupt or
polling a special register. Once the hardware action signals completion, the action has processed the
data and already written it into the provided output memory buffer. From there it is written into a new
file. It can now be further processed.

Application on
Server
-

HELLO WORLD. I love this ne |:> | snap_helloworld —i /timp/t1 —o /tmp/t2 -mode=fpga |
experience with SNAP

) | snap_helloworld i /tmp/t1 -0 imp/t2 (-mode=cpu) |

FITS

®

1 el

“Lower case" “Upper case”
processing processing
= “software” action -> “hardware” action

ﬂ
4_1

11

=
- ’
&5 .
< = Change C code to implement:
lhello world. | love this ne HELLO WORLD. | LOVE THIS NEW, = :
[expe,,-eme with snap EXPERIENGE WITH SNAP - A switch to execute action on CPU or on FPGA

- Away to access new resources

In the following sections it is explained how the data processing is done inside the FPGA and which steps
can be used to analyze the performance as well as methods to improve it.

SNAP Framework built on Power™ CAPI technology Page

February 15th, 2017 3

Power Systems \J

&

J
CAP!

February 15th, 2017

2. How and where to find key data?

2.1 Opening Vivado HLS

The optimization of the code is essentially done on the hardware action.

= M)
Power Systems -z

Go into his_helloworld/hw directory, compile the hardware action and open vivado_hls tool. The

compilation is necessary since this will set all parameters needed for the tool.

cd $SNAP ROOT/actions/hls_helloworld/hw
make

vivado hls

Select Open Project
VIVADQ! ~

Quick Start

£
rE=
I&" =

Open Project

S

Create New Project

Open Example Project

Documentation

m & @
Tutorials User Guide Release Notes Guide
Select then hw directory, hlsUpperCasexxx directory and then Select OK
L
_" 4 | nimbix ' snap | actions | his_helloworld I'l: Create Fojderl
Places

@4 Search
& Recently Used

Modified
fa hisUpperCase_xcku050-ffval156-2-e
: cpr

£3 nimbix 4 - =
{3 Desktop 1€ README.md
| File System run_hls_script. te

SNAP Framework built on Power™ CAPI technology

Page

O
CAP! !

2.2 Understanding parameters preset by SNAP scripts

@

Several parameters have been set by SNAP scripts when compiling the hardware action. Let’s see where
they are so that you can better understand why they are set to these values.

In the menu, you have 2 important settings: one for the project and one for the solution. A project is
related to the source code you are working on, while the solution is related to the FPGA you are working
with.

Go to Project > Project Settings

[/] Vivado HLS 2017.4 - hisUpperCase_xcku0

File Edit Bd¢iEd@ Solution Window Help

| G Project Settings.:
In Simulation tab, you will find the paths to all the header files used by your C/C++ hardware action

code.
£ General | Simulation Settings ey
" ” - synthes
Simulation :
B Synthesis TestBench Files Yirectivi
Name Add Files... |
i & action_uppercase.cpp -l./../include -1../../../software/i 5 ation
New File... I
stimate
Add Folder... l
Edit CFLAGS... -k cycle

mates
Remove

Edit CFLAGS Dialog

CFLAGS Value

You will notice that the last parameter of the CFLAGS line is -DNO_SYNTH. This allows the user to add at
the end of the hardware action code an area delimited by “#ifdef NO_SYNTH / #endif” which contains a
unit test for the hardware action. This area will not be “synthesized” meaning that the code in this area
will not be implemented into the FPGA.

In Synthesis tab, you will find the same line but without the -DNO_SYNTH.

#] General Synthesis Settings

¥ Simulation
Top Function: |h|s_action Browse... |

~ Synthesis
-Synthesis C/C++ Source Files
Eaes Add Files... |
New File... |

B action_uppercase.cpp -I/home/nimbix/snap/actions/i

‘ Name

Edit CFLAGS Dialog

CFLAGS Value

SNAP Framework built on Power™ CAPI technology
February 15th, 2017 >

O
CAP! h

You will notice that at the top of this window, you can select a Top function. Push the Browse button
and you will discover all the different functions contained in your hardware action. By default, the
his_action is selected since it is the top one. This feature gives you the ability to work with just part of
your design instead of taking the whole function at once. This can be very useful when porting a
function step by step.

@

[General Synthesis Settings
vl Simulation
" Synthesis Top Function: [his_action Bruwse...l

-Synthesis C/C++ Source Files

Select Top F ti
e elect Top Function

process_action (action_uppercase.cpp)
hls_action (action_uppercase.cpp)

Now let’s have a look at the other part of the settings.
Go to Solution > Solution Settings

/ Vivado HLS 2017.4 - hisUpperCase_xcku060-ffv

File Edit grojecﬂindow Help
ird E ¥ I*@ o!utionSettings..:D

In the General tab, you can see a setting done on the config_interface. This is to declare that all address
busses used in SNAP are declared to be 64 bits wide (default is 32 bits).

Configuration Settings

B+ Synthesis
¥ Cosimulation T
Export . Command Parameters Add...
config_interface {trim_dangling_port=rfalse, clock_enable=false, e [P, |
e |

Add Command +

Command:

|comﬁgilnterfa(e » ;I
Parameters

clock_enable a

expose_global O

Conansoaos 0>

m_axi_offset off v |
register_io off Rd I
trim_dangling_port []

In the Synthesis tab, you can select the clock period (250MHz = 4ns) and the FPGA exact type used by
the card you are working with (XCKU060).

} ® General Synthesis Settings

Clock

¥ Cosimulation
Export . Period: |4 Uncertainty:

C

Part Selection :
-]
We will not go further into the other tabs since nothing has been changed in those.

SNAP Framework built on Power™ CAPI technology Page
February 15th, 2017 6

J
CAPI
A

2.3 Looking for key constraints

In the previous chapter, we have seen 2 important settings, which are the constraints given to the chip.
The clock period is 4ns and the FPGA used is a KU060. The period gives the speed of the logic we are
going to work with and the FPGA type will give you the size of the FPGA, meaning the amount of
resources available for your hardware action.

, _—_ . . ¥ Debug Analysis ‘
Let’s stay first in the Synthesis view (right of your screen)

The clock period constraint is displayed in the middle of your screen under the Synthesis tab. After every
synthesis, you will need to check that the estimated value is below the “Target — Uncertainty” value.

ynthesis(helloworld) &2

Synthesis Report for 'his_action’

General Information

Date: Wed Feb 14 10:24:23 2018
Version: 2017.4 (Build 2086221 on Fri Dec 1
Project: hilsUpperCase_xcku060-ffval156-:
Solution: helloworld

Product family: kintexu
Target device: xcku060-ffvall56-2-e

Performance Estimates

- Timing (ns)

= Summa
lock | Target Estimated Uncertain
ap_clk 4.00 3.50 0.50

In the same tab, a bit below, you will find the information about the resources utilization of your
hardware action. Be careful, these values are not taking in account all the SNAP + PSL logic that is
needed in the final design, but just your hardware action. To give you a rough idea, the
“SNAP+PSL+memory drivers” can take between a third and a half of the FPGA. However, keep in mind
that HLS gives very pessimistic estimation and the Vivado routing tool works efficiently, so you can easily
try and reach 100% of your chip with your hardware action and fit into the FPGA!

=g Synthesis(helloworld) &
Jtilization Estimates

- Summary
Name BRAM_18K DSP48E FF T

DSP

Expression - - 0 20
FIFO = e = =
Instance 59 = 5357 7501
Memory - - -
Multiplexer - - 78
Register - - 285

Total 59 0 5642 7599
Available 2160 2760663360 331680
Utilization (%) 0 ~0

SNAP Framework built on Power™ CAPI technology Page

February 15th, 2017 7

J
CAP!

February 15th, 2017

F’owerSystems

2.4 Looking for key data for measurement

In the previous chapter, we have seen 2 important settings which are the constraints given to the
design. Let’s now see how to measure the time taken by your function, also called hardware action:

, . . . 35 Debug |Synthesis {Z" Analysis
Let’s go into the Analysis view (right of your screen) - : @

This will display all the data you need to do the measurement.

At the top of the screen, you will find the amount of logic used by every part of your functions (BRAM is
FPGA internal memory, DSP (digital signal processing) is FPGA predefined math functionality, FF (flip-
flop) and LUT (LookUp Table) is logic related).

At the bottom of the screen, you will find the latency, meaning the time taken by the logic described by

your hardware action. (Select the functions above to get details on the functions below).
#:] Module Hierarchy - = = A8

l BRAMl DSPI FF | wT | Latencyl lntervall Pipeline type I
¥ e his_action 159 15642 7599: i undef

T T T

£° Performance Profile 82 | . Resource Profile 5 B = 8

| Pipelinedl Latencyl Initiation Interval| Iteration Latency | Trip cou

v e process_action | -

G’>\; main_loop ‘no

® uppercase_c¢ no

- 1 208

In this example, you can read that the loop called main_loop in your C code of the hardware action
takes 208 cycles of 4ns clock period, meaning 820ns. It is due to a 64 iteration of a 2 cycles loop and
overall logic outside the uppercase_conversion loop.

If no data are displayed, then it may be because you have loops with unknown min / max bounds. Refer
to UG902 HLS guide to learn how to specify it. It will not impact your design, but gives you values for
your measurements.

-l Instance

Latency | Interval
Instance Module min max min max Type

grp_process_action_fu_141process_act ioe

The other view will give you a graphical representation of the operations done and if they are done
sequentially or in parallel. This can be interesting to use to check in a glance what you think should be
parallelized. For parallelization you can also look to the Synthesis view which wil display parallel calls.

Current Module : hls_action > process_action

Operation\Control Step | cao | ca1 | caz | ca3 |

77 bytes_to_transfer(select) - Instance
78 node_229(write) : - ——
79 node_231(write) Latency | Interval
80 Instance Module min max min max Type
81 A{ 1Ly | grp_process_action fu 149%process action ? 1 9 Znone
82 tmp_66 (1cmp) = - N -
83 i1(+) B 1ne
84 text_load_64(read) | Instance
85 tmp_69(icmp) | Latency Interval
:? l""’-?;(‘:';”] Instance Module | min.max | min| max |Type

ar_co
28 thp_71(+) | Qrp_test shake fu 174test shake 129332375673129332375673none
89 node_250(write) | grp_test ha] fu 188 test sha3 ? ? 7 7none
90 sum3(+) s 223473471 223473471none
e o necreac) 223473471 223473471none
e ostiired) 223473471 223473471none
. 22 234 1
Pr— — or 223473471 223473471none

SNAP Framework built on Power™ CAPI technology Page

J
CAP!

— — — — Fa)
A

Power Systems
2.5 Looking for potential improvement in the code

As for a software application when looking to the CPU time used by the different functions, the goal is to
see where time is spent.

Remember that in a FPGA, we are using pre-defined resources, but nothing is pre-connected together.
In a FPGA, we can instantiate thousands of multipliers, and can use those to execute a calculation much
quicker in parallel than sequential execution of the calculation on the CPU. The goal is to explain the task
(hardware action) the right way to the tool, so the tool can implement the desired parallelism.

The two main constraints in a FPGA are the availability of the resources used (e.g. multipliers, RAM),
and the physical distance between those resources, which may impact the clock period constraint you
have set.

The Vivado HLS tool we are using is good at improving three specific pain-points of your code:

- Huge number of loops
- Math functions
- Parallelized processing

Identifying these 3 items in your code may help you when going through the obvious process:

- measure the latency of a part of the code
- try optimization
- measure the benefit immediately.

There are two important recommendations before starting any change in your code. These simple extra
lines may save you a lot of time debugging and optimizing the code:

1) Test your whole code without any optimization. Do not insert any specific HLS optimization
instructions (such as “#pragma HLS xxx”) before your whole hardware action is tested and is
functionally correct. Keep in mind that the insertion of these specific pragmas will constraint the
compiler to use different algorithms which may break the functionality of your code!

2) Build a unit test and insert it at the bottom of your hardware action between the “#ifdef
NO_SYNTH/#endif” flags so that you can test at any time if a change has broken your codes
functionality

SNAP Framework built on Power™ CAPI technology Page

February 15th, 2017 9

C\

CAPI ‘ —
F'owerSystems
3. Measuring and optimizing hls_helloworld hardware action
3.1 Measure latency of a design with “No optimization”
Let’s continue our work on the hls_helloworld hardware action named action_uppercase.cpp. As
explained in the previous chapter, we have in the Synthesis tab = * 2% C_Synthesis 3= Analys’s | 1o same
file used for the Source code (code synthesized) and for the Test Bench (used for Simulation only).
Opening the Source code, you will see that the test between the “#ifdef NO_SYNTH / #endif” flags has
been greyed, meaning that it will not be considered in synthesis
u_.Eprorer 23 \‘ = g =35yn(v\es|s{hellowwu L action_uppercase.cpp & -
1 }
| 121 }
v & htsUpperCase xcku060- ffval
N» includes {28 TESTBENCH BELOW IS USED ONLY TO DEBUG THE HAR
ch NO_SYNTH
[s action_uppercase.cpp T
» #define MEMORY_LINES 1
[action_uppercase.cpp e
% a@)e-v e
Let’s run the Simulation *"" =" and you will get the result of your test bench:
Vivado HLS Console
INFO: [SIM 211-2] #*s#sssssssssss CSIM Start +Heessssssrsins
INFO: [SIM 211-4] CSIM will launch GCC as the compiler.
Compiling ../../../../action_uppercase.cpp in debug mode
Generatmg csim.exe
ACTION_TYPE: 10141008
RELEASE_LEVEL: 00000022
RETC: eoof
Discovery : calling action to get config data
L ddddddddddddddddddddddddddddddddddddddd L
ggi(CCCCCCCCC(CCCE\C/gi(gcg;gggggg(ig(((((((
IR0 [srn 211- 1
INFO: [SIM 211-3] #++ Finish *vssssssrsrsns
Finished C simulation.
As seen in 2.4, the 3 key data we will be looking every time are:
ﬁ synthesns(helloworld) 2:4
= Timing (ns)
= Summary
Clock| Target| Estimatey) Uncertainty
el *** =¥ to check that the clock constraint is met
£ Module Hierarchy
|BRAM DSP| FF wT |Latency| Interval] Pipeline type
< e hls_action CJL |undef | none
laslatad | ﬂ_ el => to check the amount of logic used by the change
|£7 performance Profile zi (Resource Proﬁle
- © process_action - - -
¥ o main_loop no = . i
! @ I 2 ‘64
o wpercase.cqro (s D) ; f =>» to measure the overall latency
Case 1: No optimization
Main loop :
- 208 x 4ns = 832ns
- 7599 LUTs — 5642 FF
Page

SNAP Framework built on Power™ CAPI technology
February 15th, 2017 10

CAP!

\

P sl

Power Systems

3.2 Optimization instructions provided by Vivado HLS

A full reference of these instructions is detailed in HLS User Guide UG902 (HLS 2017.4 release).

24 optimization directives are listed. 5 major ones are highlighted below but we will use only 2 basic
ones for this example.

Directive Description

ALLOCATION

Specify a limit for the number of operations, cores or functions used. This can force the sharing er hardware resources and may increase latency

ARRAY_MAP

Combines multiple smaller arrays into a single large array to halp reduce block RAM resources.

ARRAY_PARTITION

Partitions large arrays into multiple smaller arrays or into individual registers, to improve access to data and remove bleck RAM bottlenacks.

ARRAY_RESHAPE

Reshape an array from one with many elements to one with greater word-width. Useful for improving block RAM accesses without using more block RAM.

CLOCK For SystemC designs multiple named clocks can be specified using the create_clock command and applied to individual 3C_MODULEs using this directive.
DATA_PACK Packs the data fields of a struct into a single scalar with a wider word width.

DATAFLOW Enables task level pipelining, allowing functions and loops to execute concurrently. Used to minimize interval.

DEPENDENCE

Used to provide additional information that can cverceme loop-carry dependencies and allow loops to be pipelined {or pipelined with lower intervals).

EXPRESSION_BALANCE

Allows automatic expression balancing to be turned off.

FUNCTION_INSTANTIATE

Allows different instances of the same function to be locally optimized.

INLINE

Inlines a function, removing all function hierarchy. Used to enable logic optimization across function boundaries and improve latency/finterval by reducing function call overhead.

INTERFACE Specifies how RTL ports are created from the function description.

LATENCY Allows a minimum and maximum latency constraint to be specified.

LOOP_FLATTEN Allows nested loops to be collapsed into a single loop with improved latency.

LOOP_MERGE Merge consecutive loops to reduce overall latency, increase sharing and improve logic optimization.

LOCP_TRIPCOUNT Usad for loops which have variables bounds. Provides an estimate for the loop iteration count. This has no impact on synthesis, only on reporting.

(OCCURRENCE Used when pipelining functions or loops, to specify that the code in a location is executed at a lesser rate than the code in the enclosing function of loop.

PIPELINE Reduces the initiation interval by allowing the concurrent execution of operations within a loop or function.

PROTOCOL [This commands specifies a region of the code to be a protocol region. A protocol region can be used to manually specify an interface protocol.

RESET [This directive is used to add or remove reset on a specific state variable {global or static).

RESOURCE Specify that a specific library resource {core) is used to implement a variable (array, arithmetic operation or function argument) in the RTL.

STREAM Specifies that a spedific array is to be implementad as a FIFO or RAM memory channel during dataflow optimization.

[TOP [The top-level function for synthesis is specified in the project settings. This directive may be used to specify any function as the top-level for synthesis. This then allows different
solutions within the same project to be specified as the top-level function for synthesis without needing to create a new project.

UNROLL Unroll for-loops to create multiple independent operations rather than a single collection of operations.

Important to know: adding a pragma may reorder all the generated RTL code so that you won't

recognize your variables in debug mode.

February 15th, 2017

Page

SNAP Framework built on Power™ CAPI technology 1

®

J
CAP!

=)

Power Systems
3.2.1 #pragma HLS UNROLL (factor=2)
UNROLLING means flattening a loop so that all iterations are executed in one cycle. The factor value
controls the unroll; default is a maximum unroll. But as nothing is magic, unrolling a loop means that you
are duplicating the logic used, so potentially your design takes much more FPGA resources. This UNROLL
pragma is inserted into the loop.

This feature is very useful to parallelize high level functions as soon as they are independent, meaning
not waiting for the value of the previous iteration to start a new one.

This pragma is inserted in the code at the top of a function or inside the loop

void top(...) |

for mult:for (i=3;i>0;i--) {

ali] = b[i] * cl[i];
}
}
Rolled Loop Partially Unrolled Loop Unrolled Loop
Read b(3] Read bf2] Read b[1] Read b[0] Read b[3] Read b[1] Read b([3]
Read c[3] Read c[2] Read c[1] Read c[0] Read ¢[3] Read c[1] Read c[3]
Read b[2] Read b[0] Read b[2]
- 1 - 1 - | - W Read c[2]
Read b1
R Resd 1]
— Read b[0]

Write a[1] Read c[0]
Wit a[0]

1
1
—
1

X14278

Xilinx HLS UG902 (v2017.4) December 20, 2017: figure 1-60

SNAP Framework built on Power™ CAPI technology Page
February 15th, 2017 12

-
CAP!

3.2.2 #pragma HLS PIPELINE
A PIPELINE directive will first flatten the design (unrolling loops). Then it will look at the relationship

between all variables and find which processing can be done before the end of another processing to
understand what can be parallelized / pipelined.

In this example, the compiler with this pipeline instruction will understand that the next RD can be done
during the CMP of the previous data. There is no reason to wait for completion of the full sequence. The
initiation interval (I1) which is the time between 2 reads will so be reduced from 3 to 1 in this case. The
overall latency will so be reduced from 8 to 4 cycles.

PIPELINE is a recursive function, so handle it with care since it may add a huge amount of logic for
minimally better latency!

PIPELINE can be very good for math processing. If it’s not, that can be due to the way your code is
written.

void func(m,n,o) {

for (i=2;1i>=0;1i--) {
op_Read;
op_Compute;]
op write; [

B [I

- - -
3 cycles 1 cycle
o [EKEE o [ETHEE ~ T o [T IEEE
- > ro [T I
8 cycles o [EZEEDE
- >
4 cycles
(A) Without Loop Pipelining (B) With Loop Pipelining
14277
Xilinx HLS UG902 (v2017.4) December 20, 2017: figure 1-51
SNAP Framework built on Power™ CAPI technology Page

February 15th, 2017 13

LY

\J
CAPI |

@

3.3 Measure latency of a design with an UNROLL instruction in a loop

Let’s start a first optimization to understand the effect of a simple UNROLL instruction. Open the
action_uppercase.cpp file located in Source and uncomment the #pragma HLS UNROLL on line 60.

57 /* Convert lLower cases tO upper cases byte per byte */
58 uppercase_conversion:

59 for (i =0; 1 < sizeof(text); i++) {
60CHpragma HLS UNROLL
61 if (text[i] >= 'a' && text[i] <= 'Z')

62 text[i] = text[i] - ('a' - 'A');
63 }

to @ L.%@B"V #

. . . —RU C Simulation}: | . .
Save the file, run the C simulation stnelFen CSMUREion upp 1 check that your test bench gives you the right

result.
2@ o) v e
. “uncs thesi
Now run the C synthesis "o#o===="22000ee g get the key numbers as for 3

2] Synthesis(helloworld) &2

= Timing (ns)
= Summary
Clock| Target Estimatggl Uncertainty
ap_clk 4.00 0.50|
=> ok

2] Module Hierarchy
|Bram|Dsp|FF | wr | Latency|interval| pipeline type
< e his_action 58 10 | 5550 10090] {undef | none

£° performance Profile 83 | . Resource Profile

=>» x1.3 more LUTS — a bit less FFs=» more logic used

| Pipelined| Latencyl Initiation Intervall Iteration Latencyl Trip count

|~ e process_action

in_| 116 : .
[omanjoop o[- |- 15 |-G “yppercase_conversion” loop has

disappeared, and the overall latency was reduced by 13!

-

Case 2: UNROLL in
Case 1: No optimization uppercase_conversion loop
Main loop : Main loop :
-208 x 4ns = 832ns - 16 x 4ns = 64ns (x13)
- 7599 LUTs — 5642 FF - 10090 LUTs — 5550 FF (x1.3)

=>» The UNROLL instruction has been able to reduce the latency a lot but is using one third more logic.
Using this case will significantly improve the performance of the action but depending on the size of the
overall function to implement, this amount of logic added may become a constraint.

Page

SNAP Framework built on Power™ CAPI technology 14

February 15th, 2017

LY

\J
cAPl 1

et (E}

3.4 Measure latency of a design with a PIPELINE instruction in a loop

Let’s try now the PIPELINE instruction at the same location, replacing the UNROLL instruction.

57 /* Convert lower cases to upper cases byte per byte */
58 uppercase_conversion:

fo 1 = 0; 1 < sizeof(text); i++) {

61 if (text[i] >= 'a' && text[i] <= 'z')

62 text[1] = text[i] - ('a' - 'A');

63 }

% B@)e - v e
R
Save the file, run the C simulation sl CSmREoTlon upp 1 check that your test bench gives you the right

result.

%iE :@- P o

Now run the C synthesis Howor[h C SYNEhesi) pperc and get the key numbers as for 3.

121 Synthesis(helloworld) 2

= Timing (ns)
= Summary
Clock| Target Estimatggl Uncertainty
ap_clk 4.00 0.50|
=> ok

¥ Module Hierarchy
|BRam| Dsp|FF [T | Latency| interval pipeline type
< o his_action 59 |0 15637|7632] {undef | none

il [N very similar to case 1 no loss

£F performance Profile 53 | . Resource Profile

| Pipellnedl Latencyl Initiation |nterva|| Iteration Latencylmp count
~ © process_action |- |- iz = =

= o main_loop | no
s R R : ENIN S The overall latency was reduced by 1.4
Case 2: UNROLL in Case 3: PIPELINE in
Case 1: No optimization uppercase_conversion loop uppercase_conversion loop
Main loop: Main loop: Main loop:
- 208 x 4ns = 832ns - 16 x 4ns = 64ns (13x better) - 145 x 4ns = 580ns (1.4x better)
- 7599 LUTs — 5642 FF - 10090 LUTs — 5550 FF (x1.3) - 7632 LUTs — 5637 FF (#same)

=>» Note that comparing to case 1, the PIPELINE instruction has been able to reduce the latency a bit
without taking more logic! Depending on the performance you need and the size of your design, it can
be interesting to use this option which slightly improves your performance without taking more logic in
the FPGA.

You may notice the following (false) warning during the synthesis. It is related to “main_loop”.

WARNING : [XFORM 203-542] Cannot flatten a loop nest 'méin_loop' (action u'gmrcase.cpp:46:23) in function’ ‘process_action'-
the outer loop is not a perfect loop because there is nontrivial logic in the loop latch.

This is a side effect of the PIPELINE directive but no reason to worry, Result is confirmed as ok:
INFO: [SCHED 204-61] Pipelining loop 'uppercase_conversion'.
INFO: [SCHED 204-61] Pipelining result : Target II = 1, Final II = 1, Depth = 2.

SNAP Framework built on Power™ CAPI technology Page
February 15th, 2017 15

LY

\J
CAPI |

@

Power Syst;ms
3.5 Measure latency of a design with a PIPELINE instruction inside the top main loop

Let’s try now the PIPELINE instruction inside the main_loop instead of inside a sub loop.

45 main_loop:

46 while ize > 0) {

48 word_ EXT;

49 unsigned char i;

20

51 /* Limit the number of bytes to process to a 641

hiban da tonanfac — MFAlaima DOl

As the PIPELINE is recursive, keeping or not the pragma defined ealier in uppercase_conversion loop will
have no effect.

INFO: [XFORM 203-562] Unrolling all sub-loops inside loop 'main_loop' (action_uppercase.cpp:46) in function
WARNING: [XFORM 203-565] Ignored pipeline directive for loop 'uppercase_conversion' (action_uppercase.cpp:59
INFO: [XFORM 203-501] Unrolling loop 'uppercase_conversion®' (action_uppercase.cpp:59) in function 'process_a
INFO: [XFORM 203-102] Partitioning array 'text' (action_uppercase.cpp:48) automatically.

..... Lo s maml e P AR An s aa fnary

% B@)e - v e
s(hen(Run € Simution jon_upp

Save the file, run the C simulation and check that your test bench gives you the right

result.

aiao(e)vaer
Now run the C synthesis "o#o="==rm=mweere g g get the key numbers as for 3

iz]) Synthesis(helloworld)):3

= Timing (ns)
= Summary
Clock| Target Estimatggl Uncertainty
ap_clk 4.00 0.50|
=> ok

#-] Module Hierarchy
|BrRam| Dsp|FF | wT | Latency| nterval | pipeline type
|+ e his_action (60 |0 |5460] 10163] {undef | none

© process_action 1518 | 4088

£F performance Profile & | . Resource Profile

=>» very similar to case 2 = x1.3 more LUTs

| Pipelined| Laten:yl Initiation Intervall Iteration Latencyl‘l‘rip count
< e process_action |- |

SRRk ! => As for case 2, the uppercase_conversion loop

has disappeared and the overall latency was reduced by 13 !

Case 1: No optimization Case 2: UNROLL in Case 3: PIPELINE in

Main loop: uppercase_conversion loop uppercase_conversion loop

- 208 x 4ns = 832ns Main loop: Main loop:

-7599 LUTs — 5642 FF - 16 x 4ns = 64ns (13x better) - 145 x 4ns = 580ns (1.4x better)
\ - 10090 LUTs — 5550 FF (x1.3) - 7632 LUTs — 5637 FF (#same)

Case 4: PIPELINE in main loop

Main loop:
- 16 x 4ns = 64ns (13x better)

- 10163 LUTs — 5460 FF (x1.3)

SNAP Framework built on Power™ CAPI technology Page

February 15th, 2017 16

® J
CAP!

‘.'\‘
\

Power Systems

=>» The PIPELINE instruction inserted inside the top “main_loop” or at the top of the function will be
able to have the same effect as a simple UNROLL instruction located below in the logic (Case 2).
Inserting a PIPELINE directive can drive to situations where the latency and the size of the logic
generated gives opposite results than the one you would expect. This is due to the way the algorithm
tries to optimize your code if he does a bad analysis path. Rewriting the code differently or placing the
PIPELINE instruction elsewhere may solve the issue.

February 15th, 2017

SNAP Framework built on Power™ CAPI technology

Page
17

CAP!

A
NS

4. What represents the times values measured?
4.1 What is included in the time reported by the application running the action on a real FPGA?

Let’s use the non-optimized release and look to the results returned by the execution of the
his_helloworld on a real FPGA:

I

Result is 54us, while execution in HLS shows 832ns!! That’s a great gap! So, let’s try and understand
these different numbers and what we are measuring.

Looking to the application code his_helloworld/sw/snap_helloworld.c, we measure the time the
“function” is called and returns a return code. This “function” can either be the software or the
hardware action depending on the switch we used. In this case, we used the hardware action.

gettimeofday(&stime,

snap_action_sync [§ _job(action, &cjob, timeout);

gettimeofday(&etime,

The snap_action_sync_execute_job, will successively go through 4 different steps:

Step 1: Step 2: Start the \ Step 3: Manage the Step 4: Read all the \
Write all action, fetch the completion (polling registers from the
registers to data, process or interrupt) after action (MMIO) after
the action them and write the sending of the the sending of the
(MMIO) back the result completion signal completion signal

/ J

These 4 steps are done successively but are completely independent actions, meaning that they will be
handled by SNAP libraries through the Operating systems as 4 independent tasks.

To have a better view, let’s use the Simulator capabilities which gives a better view of all steps.

SNAP Framework built on Power™ CAPI technology Page

February 15th, 2017 18

CAP!

A
NS

4.2 Understand what shows a simulator

Before starting the explanation, let’s understand what we measure with a simulator. The simulator is
working with a model named PSLSE (PSL Simulation Engine) which provides answers to the hardware
action, as if we have a real Power8 + PSL answering. This model allows the simulator to see exact
answers that could be provided by an application running on a Power8 through a PSL, but this model is
NOT simulating in any case the time taken by the Operating System nor all levels between the
application and the hardware action.

In other words, we can see how long read or writes to registers takes, how long the processing of the
hardware action takes but we are missing the real timing of the real OS and firmware.

After having run a full simulation, we can display the waveforms using different simulators. Let’s use the
default Xilinx Vivado simulator (available on Nimbix) using the following command:

cd $SNAP ROOT/hardware/sim
xsim -gui xsim/latest/top.wdb

Choosing specific signals allows you to see all the operations in one glance. Let’s explain them:

- The first signal ap_start shows a value “set to 1” when the hardware action is enabled.

- The second signal ah_cea shows the access by the hardware to the server memory (through the
PSLSE simulator).

- All signals starting by m_axi_host shows the activity to and from the server memory memory
(through the PSLSE simulator).

All signals starting by s_axi_ctrl_reg shows the MMIO activity, meaning the read and write of the MMIO
registers.

Name

» ap_start

| = B = ENfD

SNAP Framework built on Power™ CAPI technology Page

February 15th, 2017 19

CAP!

A
NS

4.3 Step 1: Write all registers to the action (MMIO)

Writing all registers to the action (MMIO) takes roughly 1ps. Once this is done, the hardware action is all
set but not started. The Operating System will send in Step 2 the “START” order.

This step happens once to configure the hardware action.
Name

.M_ARVALIQJ O
m m_axi_host
B m_axi_hos

® m_axi_hos

0.938871 us

SNAP Framework built on Power™ CAPI technology Page

February 15th, 2017 20

CAP!

)
Power Systems N

4.4 Step 2: Start the action, and process the data with the hardware action

The different actions done in Step 3 takes roughly 1.5us split as follow:

The START signal is written by the application in the MMIO register.
=>» This triggers the start of the hardware action

Data are read (between rising edge of ap_start and RVALID)

Data are processed (between RVALID and AWVALID)

Result is written (between AWVALID and falling edge of ap_start)

MName

» 4D Stan

=>» The time given by HLS (832ns) is perfectly coherent with the time given by the simulator when not

including the time to access the data.

Name
b ap_start

> M ah_ce

SNAP Framework built on Power™ CAPI technology
February 15th, 2017 21

CAP!

()
o

4.5 Step 3: Handle the completion signal

In this example, we have chosen the default interrupt mode for handling the completion of the
hardware action. This option can be modified in the application to use the polling mode.

When the action is completed, the ap_start signal is disabled. This sends an interrupt to the Operating
System which will identify the source of this interrupt and the SNAP library will clear the interrupt.

This is done once after the execution of the hardware action.

105 us

Name

0.204000 us

O ys —— .

Page

SNAP Framework built on Power™ CAPI technology

February 15th, 2017

22

CAP!

A
NS

4.6 Step 4: Read all registers of the action (MMIO)

The last operation done by the SNAP libraries is a complete read of the action registers. This step takes
roughly 0.5us and is done once at the end of the end of the action.

Name

m m_axi_hos..
m m_axi_host...e

® m_axi_hos... m_A

Page

SNAP Framework built on Power™ CAPI technology
February 15th, 2017 23

CAP!

A
NS

4.7 Conclusion: is the overhead always harmful?

This hls_helloworld example is going through all the SNAP process with just a few bytes read and
written. Indeed, an overhead of 53us seems huge versus the 1us of processing. Now, this example is not

reflecting the reality of offloading large processing tasks (meaning there is no interest to offload such
little processing).

The overhead (Step1+Step3+Step4) can become totally negligible if the processing (Step 2) becomes
more important. Just increasing the size of the text processed by hls_helloworld confirms this.

— |
n
H

> M s_axi_ctrl_...wdata[31: O

92.736000 us

|100 us

T | [

We can notice that processing the data by bursts rather than by reading and writing single words would
improve a lot the behavior of this hls_helloworld example.

SNAP Framework built on Power™ CAPI technology Page
February 15th, 2017 24

® J
CAP!

5. Summary

‘.'\‘
\

Power Systems

Before a real application modified to use an FPGA for acceleration, analysis must be done to judge

potential performance benefits of FPGA usage, such that expected parallelism and advantages by using
pipelined data processing. The analysis needs also to consider latency overhead involved when starting
the FPGA action and waiting for its completion.

This document explained how the performance of the hardware accelerated action on the FPGA can be
analyzed and further optimized. The SNAP framework helps to cut out performance critical parts of an
application and enables their execution on the FPGA.

February 15th, 2017

SNAP Framework built on Power™ CAPI technology

Page
25

