
SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
1

IBM CAPI SNAP framework
Version 1.0

How to optimize a function in SNAP environment.

The Guide describes how to measure and optimize the code of a function in SNAP environment.

In a first step, you have ported your code to a FPGA. In a second step, you need to see how to optimize

it. The final performance depends on the way you will write your code. This is very similar to what we do

for software. The difference is in the concepts used for optimizing FPGA performance.

 Overview

Let’s use the very simple example hls_helloworld to learn how we can measure the time spent by the

function, also called “hardware action”, and how to optimize it. This example is so basic that you will not

get much from it, but you will hopefully understand the concept. As soon as you understand these basic

points, you can try to port and optimize the sponge/SHA3 code which will give you more experience

about issues you might face and how to solve them (see related Application Note in

https://github.com/open-power/snap/doc).

The last part of this document is key to understanding the different “times” reported and what they

represent. It will explain the overhead added to access the FPGA and should help you understand when

offloading a function becomes interesting or not.

We will use the Nimbix cloud environment to illustrate the issues and their resolutions, but this can be

easily translated to any other environment.

Notice that we use a HLS (High Level Synthesis) tool in this example, because it provides a fast way to

generate your own hardware implementation from a C/C+ code. Amongst others, the Xilinx Vivado HLS

tool was selected since it is one that better enables those users who have less hardware knowledge. You

can easily use the other HLS tools provided by other providers (Stratus from Cadence, …) as long as the

tool can generate HDL (Verilog, VHDL, ...) code.

This document has been built using snap git release tag v1.3.2. It can certainly work also for new

releases.

This document will successfully go through the following items:

- understand where to find and set parameters that can impact the time spent by your function.

- how to identify in which function most time is spent

- find a path for improvement

- try optimizations and compare performance results

- understand the difference in time reported by application and actions.

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
2

Contents

Overview ... 1

Contents .. 2

1. The helloworld example .. 3

2. How and where to find key data?.. 4

2.1 Opening Vivado HLS .. 4

2.2 Understanding parameters preset by SNAP scripts .. 5

2.3 Looking for key constraints ... 7

2.4 Looking for key data for measurement .. 8

2.5 Looking for potential improvement in the code ... 9

3. Measuring and optimizing hls_helloworld hardware action .. 10

3.1 Measure latency of a design with “No optimization” ... 10

3.2 Optimization instructions provided by Vivado HLS .. 11

3.2.1 #pragma HLS UNROLL (factor=2) .. 12

3.2.2 #pragma HLS PIPELINE .. 13

3.3 Measure latency of a design with an UNROLL instruction in a loop ... 14

3.4 Measure latency of a design with a PIPELINE instruction in a loop .. 15

3.5 Measure latency of a design with a PIPELINE instruction inside the top main loop 16

4. What represents the times values measured?.. 18

4.1 What is included in the time reported by the application running the action on a real FPGA? 18

4.2 Understand what shows a simulator .. 19

4.3 Step 1: Write all registers to the action (MMIO) .. 20

4.4 Step 2: Start the action, and process the data with the hardware action 21

4.5 Step 3: Handle the completion signal ... 22

4.6 Step 4: Read all registers of the action (MMIO) ... 23

4.7 Conclusion: is the overhead always harmful? .. 24

5. Summary ... 25

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
3

1. The helloworld example

Before starting to dive into details, let us quickly explain what the example we are using is doing.

The SNAP helloworld sample application consists of a software part running on the host as well as a

SNAP action which is executed with on the FPGA. The code running on the host-system opens a file,

places the data into an input memory buffer, opens a SNAP context and triggers the SNAP action on the

card to perform the data processing.

Once the SNAP hardware action receives the order to start the job, it will transfer the data from the

input memory buffer into the FPGA, does the requested processing, e.g. converting characters to upper

case, and transfer the results back into the provided output memory on the host.

The host application waits for the SNAP hardware action to complete, e.g. by using an interrupt or

polling a special register. Once the hardware action signals completion, the action has processed the

data and already written it into the provided output memory buffer. From there it is written into a new

file. It can now be further processed.

In the following sections it is explained how the data processing is done inside the FPGA and which steps

can be used to analyze the performance as well as methods to improve it.

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
4

2. How and where to find key data?

2.1 Opening Vivado HLS

The optimization of the code is essentially done on the hardware action.

Go into hls_helloworld/hw directory, compile the hardware action and open vivado_hls tool. The

compilation is necessary since this will set all parameters needed for the tool.

Select Open Project

Select then hw directory, hlsUpperCasexxx directory and then Select OK

cd $SNAP_ROOT/actions/hls_helloworld/hw

make

vivado_hls

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
5

2.2 Understanding parameters preset by SNAP scripts

Several parameters have been set by SNAP scripts when compiling the hardware action. Let’s see where

they are so that you can better understand why they are set to these values.

In the menu, you have 2 important settings: one for the project and one for the solution. A project is

related to the source code you are working on, while the solution is related to the FPGA you are working

with.

Go to Project > Project Settings

In Simulation tab, you will find the paths to all the header files used by your C/C++ hardware action

code.

You will notice that the last parameter of the CFLAGS line is -DNO_SYNTH. This allows the user to add at

the end of the hardware action code an area delimited by “#ifdef NO_SYNTH / #endif” which contains a

unit test for the hardware action. This area will not be “synthesized” meaning that the code in this area

will not be implemented into the FPGA.

In Synthesis tab, you will find the same line but without the -DNO_SYNTH.

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
6

You will notice that at the top of this window, you can select a Top function. Push the Browse button

and you will discover all the different functions contained in your hardware action. By default, the

hls_action is selected since it is the top one. This feature gives you the ability to work with just part of

your design instead of taking the whole function at once. This can be very useful when porting a

function step by step.

Now let’s have a look at the other part of the settings.

Go to Solution > Solution Settings

In the General tab, you can see a setting done on the config_interface. This is to declare that all address

busses used in SNAP are declared to be 64 bits wide (default is 32 bits).

In the Synthesis tab, you can select the clock period (250MHz = 4ns) and the FPGA exact type used by

the card you are working with (XCKU060).

We will not go further into the other tabs since nothing has been changed in those.

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
7

2.3 Looking for key constraints

In the previous chapter, we have seen 2 important settings, which are the constraints given to the chip.

The clock period is 4ns and the FPGA used is a KU060. The period gives the speed of the logic we are

going to work with and the FPGA type will give you the size of the FPGA, meaning the amount of

resources available for your hardware action.

Let’s stay first in the Synthesis view (right of your screen)

The clock period constraint is displayed in the middle of your screen under the Synthesis tab. After every

synthesis, you will need to check that the estimated value is below the “Target – Uncertainty” value.

In the same tab, a bit below, you will find the information about the resources utilization of your

hardware action. Be careful, these values are not taking in account all the SNAP + PSL logic that is

needed in the final design, but just your hardware action. To give you a rough idea, the

“SNAP+PSL+memory drivers” can take between a third and a half of the FPGA. However, keep in mind

that HLS gives very pessimistic estimation and the Vivado routing tool works efficiently, so you can easily

try and reach 100% of your chip with your hardware action and fit into the FPGA!

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
8

2.4 Looking for key data for measurement

In the previous chapter, we have seen 2 important settings which are the constraints given to the

design. Let’s now see how to measure the time taken by your function, also called hardware action:

Let’s go into the Analysis view (right of your screen)

This will display all the data you need to do the measurement.

At the top of the screen, you will find the amount of logic used by every part of your functions (BRAM is

FPGA internal memory, DSP (digital signal processing) is FPGA predefined math functionality, FF (flip-

flop) and LUT (LookUp Table) is logic related).

At the bottom of the screen, you will find the latency, meaning the time taken by the logic described by

your hardware action. (Select the functions above to get details on the functions below).

In this example, you can read that the loop called main_loop in your C code of the hardware action

takes 208 cycles of 4ns clock period, meaning 820ns. It is due to a 64 iteration of a 2 cycles loop and

overall logic outside the uppercase_conversion loop.

If no data are displayed, then it may be because you have loops with unknown min / max bounds. Refer

to UG902 HLS guide to learn how to specify it. It will not impact your design, but gives you values for

your measurements.

The other view will give you a graphical representation of the operations done and if they are done

sequentially or in parallel. This can be interesting to use to check in a glance what you think should be

parallelized. For parallelization you can also look to the Synthesis view which wil display parallel calls.

 or

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
9

2.5 Looking for potential improvement in the code

As for a software application when looking to the CPU time used by the different functions, the goal is to

see where time is spent.

Remember that in a FPGA, we are using pre-defined resources, but nothing is pre-connected together.

In a FPGA, we can instantiate thousands of multipliers, and can use those to execute a calculation much

quicker in parallel than sequential execution of the calculation on the CPU. The goal is to explain the task

(hardware action) the right way to the tool, so the tool can implement the desired parallelism.

The two main constraints in a FPGA are the availability of the resources used (e.g. multipliers, RAM),

and the physical distance between those resources, which may impact the clock period constraint you

have set.

The Vivado HLS tool we are using is good at improving three specific pain-points of your code:

- Huge number of loops

- Math functions

- Parallelized processing

Identifying these 3 items in your code may help you when going through the obvious process:

- measure the latency of a part of the code

- try optimization

- measure the benefit immediately.

There are two important recommendations before starting any change in your code. These simple extra

lines may save you a lot of time debugging and optimizing the code:

1) Test your whole code without any optimization. Do not insert any specific HLS optimization

instructions (such as “#pragma HLS xxx”) before your whole hardware action is tested and is

functionally correct. Keep in mind that the insertion of these specific pragmas will constraint the

compiler to use different algorithms which may break the functionality of your code!

2) Build a unit test and insert it at the bottom of your hardware action between the “#ifdef

NO_SYNTH/#endif” flags so that you can test at any time if a change has broken your codes

functionality

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
10

3. Measuring and optimizing hls_helloworld hardware action

3.1 Measure latency of a design with “No optimization”

Let’s continue our work on the hls_helloworld hardware action named action_uppercase.cpp. As

explained in the previous chapter, we have in the Synthesis tab the same

file used for the Source code (code synthesized) and for the Test Bench (used for Simulation only).

Opening the Source code, you will see that the test between the “#ifdef NO_SYNTH / #endif” flags has

been greyed, meaning that it will not be considered in synthesis

Let’s run the Simulation and you will get the result of your test bench:

As seen in 2.4, the 3 key data we will be looking every time are:

 to check that the clock constraint is met

  to check the amount of logic used by the change

  to measure the overall latency

Case 1: No optimization

Main loop :

- 208 x 4ns = 832ns

- 7599 LUTs – 5642 FF

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
11

3.2 Optimization instructions provided by Vivado HLS

A full reference of these instructions is detailed in HLS User Guide UG902 (HLS 2017.4 release).

24 optimization directives are listed. 5 major ones are highlighted below but we will use only 2 basic

ones for this example.

Important to know: adding a pragma may reorder all the generated RTL code so that you won’t

recognize your variables in debug mode.

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
12

3.2.1 #pragma HLS UNROLL (factor=2)
UNROLLING means flattening a loop so that all iterations are executed in one cycle. The factor value

controls the unroll; default is a maximum unroll. But as nothing is magic, unrolling a loop means that you

are duplicating the logic used, so potentially your design takes much more FPGA resources. This UNROLL

pragma is inserted into the loop.

This feature is very useful to parallelize high level functions as soon as they are independent, meaning

not waiting for the value of the previous iteration to start a new one.

This pragma is inserted in the code at the top of a function or inside the loop

Xilinx HLS UG902 (v2017.4) December 20, 2017: figure 1-60

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
13

3.2.2 #pragma HLS PIPELINE
A PIPELINE directive will first flatten the design (unrolling loops). Then it will look at the relationship

between all variables and find which processing can be done before the end of another processing to

understand what can be parallelized / pipelined.

In this example, the compiler with this pipeline instruction will understand that the next RD can be done

during the CMP of the previous data. There is no reason to wait for completion of the full sequence. The

initiation interval (II) which is the time between 2 reads will so be reduced from 3 to 1 in this case. The

overall latency will so be reduced from 8 to 4 cycles.

PIPELINE is a recursive function, so handle it with care since it may add a huge amount of logic for

minimally better latency!

PIPELINE can be very good for math processing. If it’s not, that can be due to the way your code is

written.

Xilinx HLS UG902 (v2017.4) December 20, 2017: figure 1-51

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
14

3.3 Measure latency of a design with an UNROLL instruction in a loop

Let’s start a first optimization to understand the effect of a simple UNROLL instruction. Open the

action_uppercase.cpp file located in Source and uncomment the #pragma HLS UNROLL on line 60.

Save the file, run the C simulation and check that your test bench gives you the right

result.

Now run the C synthesis and get the key numbers as for 3

 ok

  x1.3 more LUTS – a bit less FFs more logic used

 The “uppercase_conversion” loop has

disappeared, and the overall latency was reduced by 13!

 The UNROLL instruction has been able to reduce the latency a lot but is using one third more logic.

Using this case will significantly improve the performance of the action but depending on the size of the

overall function to implement, this amount of logic added may become a constraint.

Case 1: No optimization

Main loop :

- 208 x 4ns = 832ns

- 7599 LUTs – 5642 FF

Case 2: UNROLL in

uppercase_conversion loop

Main loop :

- 16 x 4ns = 64ns (x13)

- 10090 LUTs – 5550 FF (x1.3)

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
15

3.4 Measure latency of a design with a PIPELINE instruction in a loop

Let’s try now the PIPELINE instruction at the same location, replacing the UNROLL instruction.

Save the file, run the C simulation and check that your test bench gives you the right

result.

Now run the C synthesis and get the key numbers as for 3.

 ok

 very similar to case 1  no loss

 The overall latency was reduced by 1.4

  Note that comparing to case 1, the PIPELINE instruction has been able to reduce the latency a bit

without taking more logic! Depending on the performance you need and the size of your design, it can

be interesting to use this option which slightly improves your performance without taking more logic in

the FPGA.

You may notice the following (false) warning during the synthesis. It is related to “main_loop”.

This is a side effect of the PIPELINE directive but no reason to worry, Result is confirmed as ok:

Case 1: No optimization

Main loop:

- 208 x 4ns = 832ns

- 7599 LUTs – 5642 FF

Case 2: UNROLL in

uppercase_conversion loop

Main loop:

- 16 x 4ns = 64ns (13x better)

- 10090 LUTs – 5550 FF (x1.3)

Case 3: PIPELINE in

uppercase_conversion loop

Main loop:

- 145 x 4ns = 580ns (1.4x better)

- 7632 LUTs – 5637 FF (#same)

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
16

3.5 Measure latency of a design with a PIPELINE instruction inside the top main loop

Let’s try now the PIPELINE instruction inside the main_loop instead of inside a sub loop.

As the PIPELINE is recursive, keeping or not the pragma defined ealier in uppercase_conversion loop will

have no effect.

Save the file, run the C simulation and check that your test bench gives you the right

result.

Now run the C synthesis and get the key numbers as for 3

 ok

 very similar to case 2  x1.3 more LUTs

 As for case 2, the uppercase_conversion loop

has disappeared and the overall latency was reduced by 13 !

Case 1: No optimization

Main loop:

- 208 x 4ns = 832ns

- 7599 LUTs – 5642 FF

Case 2: UNROLL in

uppercase_conversion loop

Main loop:

- 16 x 4ns = 64ns (13x better)

- 10090 LUTs – 5550 FF (x1.3)

Case 3: PIPELINE in

uppercase_conversion loop

Main loop:

- 145 x 4ns = 580ns (1.4x better)

- 7632 LUTs – 5637 FF (#same)

Case 4: PIPELINE in main loop

Main loop:

- 16 x 4ns = 64ns (13x better)

- 10163 LUTs – 5460 FF (x1.3)

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
17

  The PIPELINE instruction inserted inside the top “main_loop” or at the top of the function will be

able to have the same effect as a simple UNROLL instruction located below in the logic (Case 2).

Inserting a PIPELINE directive can drive to situations where the latency and the size of the logic

generated gives opposite results than the one you would expect. This is due to the way the algorithm

tries to optimize your code if he does a bad analysis path. Rewriting the code differently or placing the

PIPELINE instruction elsewhere may solve the issue.

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
18

4. What represents the times values measured?

4.1 What is included in the time reported by the application running the action on a real FPGA?

Let’s use the non-optimized release and look to the results returned by the execution of the

hls_helloworld on a real FPGA:

Result is 54µs, while execution in HLS shows 832ns!! That’s a great gap! So, let’s try and understand

these different numbers and what we are measuring.

Looking to the application code hls_helloworld/sw/snap_helloworld.c, we measure the time the

“function” is called and returns a return code. This “function” can either be the software or the

hardware action depending on the switch we used. In this case, we used the hardware action.

The snap_action_sync_execute_job, will successively go through 4 different steps:

These 4 steps are done successively but are completely independent actions, meaning that they will be

handled by SNAP libraries through the Operating systems as 4 independent tasks.

To have a better view, let’s use the Simulator capabilities which gives a better view of all steps.

Step 1:

Write all

registers to

the action

(MMIO)

O

S

Step 2: Start the

action, fetch the

data, process

them and write

back the result

O

S

Step 3: Manage the

completion (polling

or interrupt) after

the sending of the

completion signal

O

S

Step 4: Read all the

registers from the

action (MMIO) after

the sending of the

completion signal

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
19

4.2 Understand what shows a simulator

Before starting the explanation, let’s understand what we measure with a simulator. The simulator is

working with a model named PSLSE (PSL Simulation Engine) which provides answers to the hardware

action, as if we have a real Power8 + PSL answering. This model allows the simulator to see exact

answers that could be provided by an application running on a Power8 through a PSL, but this model is

NOT simulating in any case the time taken by the Operating System nor all levels between the

application and the hardware action.

In other words, we can see how long read or writes to registers takes, how long the processing of the

hardware action takes but we are missing the real timing of the real OS and firmware.

After having run a full simulation, we can display the waveforms using different simulators. Let’s use the

default Xilinx Vivado simulator (available on Nimbix) using the following command:

Choosing specific signals allows you to see all the operations in one glance. Let’s explain them:

- The first signal ap_start shows a value “set to 1” when the hardware action is enabled.

- The second signal ah_cea shows the access by the hardware to the server memory (through the

PSLSE simulator).

- All signals starting by m_axi_host shows the activity to and from the server memory memory

(through the PSLSE simulator).

All signals starting by s_axi_ctrl_reg shows the MMIO activity, meaning the read and write of the MMIO

registers.

cd $SNAP_ROOT/hardware/sim

xsim -gui xsim/latest/top.wdb

Steps: OS 1 OS 2 3 4 OS

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
20

4.3 Step 1: Write all registers to the action (MMIO)

Writing all registers to the action (MMIO) takes roughly 1µs. Once this is done, the hardware action is all

set but not started. The Operating System will send in Step 2 the “START” order.

This step happens once to configure the hardware action.

Steps: OS 1

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
21

4.4 Step 2: Start the action, and process the data with the hardware action

The different actions done in Step 3 takes roughly 1.5µs split as follow:

- The START signal is written by the application in the MMIO register.

 This triggers the start of the hardware action

- Data are read (between rising edge of ap_start and RVALID)

- Data are processed (between RVALID and AWVALID)

- Result is written (between AWVALID and falling edge of ap_start)

 The time given by HLS (832ns) is perfectly coherent with the time given by the simulator when not

including the time to access the data.

Steps : OS 2 3

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
22

4.5 Step 3: Handle the completion signal

In this example, we have chosen the default interrupt mode for handling the completion of the

hardware action. This option can be modified in the application to use the polling mode.

When the action is completed, the ap_start signal is disabled. This sends an interrupt to the Operating

System which will identify the source of this interrupt and the SNAP library will clear the interrupt.

This is done once after the execution of the hardware action.

Steps : 2 3 4

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
23

4.6 Step 4: Read all registers of the action (MMIO)

The last operation done by the SNAP libraries is a complete read of the action registers. This step takes

roughly 0.5µs and is done once at the end of the end of the action.

Steps : 2 3 4

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
24

4.7 Conclusion: is the overhead always harmful?

This hls_helloworld example is going through all the SNAP process with just a few bytes read and

written. Indeed, an overhead of 53µs seems huge versus the 1µs of processing. Now, this example is not

reflecting the reality of offloading large processing tasks (meaning there is no interest to offload such

little processing).

The overhead (Step1+Step3+Step4) can become totally negligible if the processing (Step 2) becomes

more important. Just increasing the size of the text processed by hls_helloworld confirms this.

We can notice that processing the data by bursts rather than by reading and writing single words would

improve a lot the behavior of this hls_helloworld example.

Steps : 1 2 3 4

SNAP Framework built on Power™ CAPI technology
February 15th, 2017

 P a g e
25

5. Summary

Before a real application modified to use an FPGA for acceleration, analysis must be done to judge

potential performance benefits of FPGA usage, such that expected parallelism and advantages by using

pipelined data processing. The analysis needs also to consider latency overhead involved when starting

the FPGA action and waiting for its completion.

This document explained how the performance of the hardware accelerated action on the FPGA can be

analyzed and further optimized. The SNAP framework helps to cut out performance critical parts of an

application and enables their execution on the FPGA.

