)
\

Power Systems

IBM CAPI SNAP framework
Version 1.0

Quick Start Guide on a General environment.

The Quick Start Guide describes how to log to SuperVessel and use SNAP environment.

Product Overview

The CAPI SNAP Framework is an open source enablement environment developed by members of the
OpenPOWER Accelerator Work Group. SNAP, which is an acronym for Storage, Network, Analytics and

Programming, indicates the dual thrusts of the framework:

Enabling application programmers to embrace FPGA acceleration and all of CAPI’s technology

benefits.

Placing the accelerated compute engines, or FPGA “actions”, closer to the data to provide higher

performance

SNAP hides the complexity of porting an function/action to an external card. By integrating together the
following 4 components, you will get the best you can to port and offload or even accelerate your code.

The CAPI - SNAP concept

FPGA becomes a peer of the CPU
=» Action directly accesses host memory

: CAPI +
Manage server threads and actions

Action X m Manage access to 10s (memory, network)
))))))))){SN A T Rciony =>» Action easily accesses resources
| Action Z Gives on-demand compute capabilities
o FPGA | Gives direct IOs access (storage, network)
/PG A + => Action directly accesses external resources
Vivado Compile Action written in C/C++ code
| ap Optimize code to get performance
\ % r =>» Action code can be ported efficiently
Wy Network —
‘v Best way to offload/accelerate a C/ C++ code with :
- Minimum change in code
- Quick porting
- Better performance than CPU

This document will succesfully go through the following items:
- General documentation to understand SNAP and the his_helloworld example
- Process to install tools and set your environement.
- Configure SNAP for the card and the action
- Go through the 3 steps of the SNAP flow :
1) application + CPU executed action, application
2) modelisation of the FPGA executed action,
3) application + FPGA executed action

February 21st, 2017 SNAP Framework built on Power™ CAPI technology

Page 1l

https://openpowerfoundation.org/technical/working-groups/?cm_mc_uid=11241689934314769727595&cm_mc_sid_50200000=1486386840#wg_accelerator

7NN
N

Contents
PrOAUCE OVEIVIBW ...ttt ettt sttt e b e b e b et s ae e st e et e e bt e sbeesaeesanesabeeabeebeenbeesneesnreenteen 1
(60] 01 (=T 0 1 (PP PP UPPPPUPPPPTOPOR 2
1. Access the software and documentation.............ccooceeriiiiiiii it 3
2. Supported development and deployment environment.................ccccoeeiiiiiiiiiiee e 3
3. Setup your environment on your x86 development SErverccccoceeeeiiiiiecciiee e 4
4. Setup your environment on your Power8 deployment Server.............ccccceeeciieeeeciieecccieee e 5
5. Choose the card that will fit your requirements.................cccovii it 6
6. Understand how data are exchanged With FPGAoccii i 7
7. Understand the HLS helloworld example............cccooiiiiiiiiiciie e e 8
8. Preliminary Step : configure SNAP enVironNmentccoooiiiiiiiiiiic ettt aree e 9
9. Step 1: Run your application with your CPU-executable action..................ccoceeieciieiiciee e 11
10. Step 2: run your application with a simulated model of your FPGA-executable action.............. 13
11. Step 3: Run your application with your FPGA-excutable action.................cccccoeeeiiiiiiieneeeenn, 15
12. CONCIUSION ...ttt ettt e st e e s bt e e s bt e s bt e e bb e e s bt e e sabeesabeesabeeesabeesabeeensteesabaeenanes 18

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 2

===7= M)

Power Systems

1. Access the software and documentation

The SNAP framework can be downloaded from github at: https://github.com/open-power/snap.

Follow the instructions in https://github.com/open-
power/snap/blob/master/README.md#dependencies to find all you need to run the whole flow. This
means downloading:

- thelibraries (libcxl),

- the hardware component for the card you intend to use(Processor Service Layer checkpoint file
“b_route_design.dcp”),

- the simulation model (PSLSE: PSL Simulation Engine) and tools to synthesize your design (Xilinx
Vivado with the Ultrascale family chips)

- and the scripts to configure your FPGA with the binary file you created (capi-utils) on your
deployment Power CPU system.

We will go through these different steps later in section 3

All education documentation can also be found at: https://developer.ibm.com/linuxonpower/capi/snap/
or direct link http://ibm.biz/powercapi snap

2. Supported development and deployment environment

Development environment:

Development server (x86) Minimum Recommended Command to check
Ubuntu 16.04.x LTS Ubuntu 16.04.1 LTS
i Red Hat 6.4
Linux level Isb_release -a
CentOS Linux 7
SUSE11.4
gec 4.4.7 latest gec-v
Vivado 2016.4 (64 bit) 2016.4 (64 bit) vivado -version
Vivado HLS 2017.4 2017.4 vivado_hls -version
Cadence ncsim (optional) 15.10-s019 15.10-s019 ncsim -version
Default is Vivado xsim

— Deployment environment (server examples supporting CAPI SNAP)

IBM CAPI enabled Power servers

MTM PowerlLinux Code Name - P8 CAPI Capacity (per PCle slots priority)
8247-21L Power S812L Tuleta 1S/2U Linux Only 2x CAP| adapters per socket => 2 CAPI (C7-C6)
8247-22L Power 5822L Tuleta 25/2U Linux Only 2x CAP| adapters per socket => 4 CAPI (C7, C6, C5, C3)
8247-42L Power $824L Tuleta 25/4U Linux Only w/GPU |2x CAPI adapters + 2GPUs (C3-C6)=> 4 CAPI (C3,C5,C6,C7)

MTM Cloud / Technical Code Name - P8
8348-21C Power Systems S812LC [Habanero - Cloud 2x CAP| adapters per socket => 2 CAPI (C3- C4)
8335-GCA Power Systems S822LC [Firestone - MSP/Cloud 4 of the 5 PCle slots are CAPI capable => 4 CAPI(C4-C1-C5-C2)

Test server (P8) Minimum Recommended Command to check
Ubuntu 16.04.x LTS Ubuntu 16.04.1 LTS
Linux level Isb_release -a
RedHat RHEL 7.3 latest RHEL 7.3
gee 4.4.7 latest gee-v
server Firmware : skiboot 5.1.13 (= to FW840.20) latest update_flash -d

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 3

https://github.com/open-power/snap
https://github.com/open-power/snap/blob/master/README.md#dependencies
https://github.com/open-power/snap/blob/master/README.md#dependencies
https://developer.ibm.com/linuxonpower/capi/snap/
http://ibm.biz/powercapi_snap

= (A)
Dorrar Guetarme w2

Power Systems

3. Setup your environment on your x86 development server

Important: We will call “snap and ~pslse the directories in which you have installed snap, and pslse.
Please adapt your paths accordingly. Having them in the same directory may be simpler for user.

2) Follow instructions on https://github.com/open-

power/snap/blob/master/README.md#dependencies to have your x86 development
environment installed
a. No need to install “libcxl” as this library is already included in the “pslse”. However this
will be required in Power8 environment, as we use the actual PSL.
PSL Checkpoint Files (“b_route_design.dcp”) for the CAPI SNAP Design Kit
Install Xilinx Vivado 2017.4 + Vivado HLS 2017.4 with Ultrascale family chips (KU060)
Kconfig should be installed automatically (ncurses library may be needed)
Do not install capi_utils. This is only for Power8 environment.
f. Download PSLSE
3) Follow instructions on https://github.com/open-
power/snap/tree/master/hardware/README.md to set your hardware-specific variables
a. This will set Xilinx variables
b. Inyour snap directory, create the file snap_env.sh

gedit snap_env.sh

In the file write the following 2 lines:

Poogo

export PSLSE_ ROOT="pslse
export PSL_DCP=~path_to_CAPI_PSL_Checkpoints/ADKU3_Checkpoint/b_route_design.dcp

and save and close the file.
If you intend to use the N250S card, just adapt your path accordingly

export PSL_DCP="~path_to_CAPI_PSL_Checkpoints/N250S_Checkpoint/b_route_design.dcp

NOTE: you can also type the following commands to create the file :
echo "export PSLSE_ROOT="pslse" > snap_env.sh
echo "export PSL_DCP=~path_to_CAPI_PSL_Checkpoints/ADKU3_Checkpoint/b_route_design.dcp" >>

snap_env.sh

4) Follow instructions on https://github.com/open-
power/snap/blob/master/hardware/sim/README.md to set your simulation-specific variables.
Vivado xsim is the default simulator and nothing needs to be set to have it run.

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 4

https://github.com/open-power/snap.git
https://github.com/ibm-capi/pslse
https://github.com/open-power/snap/blob/master/README.md#dependencies
https://github.com/open-power/snap/blob/master/README.md#dependencies
https://github.com/open-power/snap/tree/master/hardware/README.md
https://github.com/open-power/snap/tree/master/hardware/README.md
https://github.com/open-power/snap/blob/master/hardware/sim/README.md
https://github.com/open-power/snap/blob/master/hardware/sim/README.md

===7= M)
Power Systems 2

4. Setup your environment on your Power8 deployment server

1) Clone the snap github

2) Following instructions on https://github.com/open-power/snap#dependencies you should
have installed on your Power8 deployment environment.
a. libexl installation =»(for ubuntu) sudo apt-get install libcxI-dev

b. Image loader = see https://github.com/ibm-capi/capi-utils

Your 2 environments are now fully prepared for SNAP.

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page5

https://github.com/open-power/snap.git
https://github.com/open-power/snap#dependenciesY
https://github.com/ibm-capi/capi-utils

©
5. Choose the card that will fit your requirements

SNAP 1.0 for Power8 supports actually 3 cards:

e Nallatech N250S with a Xilinx XCKU060 FPGA

e AlphaData ADM-PCIE-KU3 with a Xilinx XCKUO60 FPGA

e Semptian NSA-121B with a Xilinx XCKU115 FPGA
Depending on the algorithm you want to port on the FPGA card, you will need to choose one of the card
supported which brings you the resources you want to access.

Alpha-Data ADM-PCIE-KU3

3.5MB Block Ram on FPGA

FPGA to Host Memory Access
Latency to/from FPGA: 0.8us
- Bandwidth to FPGA: ~3.8GB/s reads and writes (CAPI limit)

8GB DDR3 Two 40Gb QSFP+ Ports
Latency to FPGA: 230ns Future Use: Currently no Bridge to SNAP
Nallatech 250S

3.5MB Block Ram on FPGA

FPGA to Host Memory Access
Latency to/from FPGA: 0.8us
Bandwidth to FPGA: ~3.8GB/s reads and writes (CAPI limit)

Two 1TB NVMe sticks (1.92TB effective)
4GB DDR4 (on back of card) Latency to FPGA: ~0.8us
Latency to FPGA: 184ns Read / 105ns write Bandwidth to FPGA: Read 1.8GB/s

8.4MB Block Ram on FPGA

FPGA to Host Memory Access
Latency to/from FPGA: 0.8us
Bandwidth to FPGA: ~3.8GB/s reads and writes (CAPI limit)

8GB DDR4 (on back of card) Two 10GE SFP+ Ports
Latency to FPGA: 184ns Read / 105ns write Future Use: Currently no Bridge to SNAP

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 6

6. Understand how data are exchanged with FPGA

=)

SNAP has been designed such a way that you can move data from a Source to a Destination without
knowing the specific protocol to access the different memories. In the application, the coder decides
where the data are located. These data locations can be either in the Host server memory, as well as on
the card memory, or even outside the server and the card on an external storage accessed directly by

the FPGA card.

The data transfer is not handled by the host processor, we just need to communicate the data source
or destination address and size and the FPGA will handle it.

Important: We will call “application” the code executed on the server which calls the “action”
containing the function to off-load and/or accelerate. This action can be “software” or “hardware”
whether it is coded to be executed on CPU or FPGA.

SNAP : the CAPI Framework

Process A
Slave Context

SNAP
library Queus

e

libexl

cxl

1]

February 21st, 2017

1) Application writer decides what to
offload/accelerate

1) Pointer to Source of data
2) Pointer to where results should go[_Dest

2) Action is performed on FPGA
3) Application is informed of action completion or
gets result data directly in memory
Action X
IIIIDDIDD| SNAP | Action Y (Csource]
| Action Z \ <3
Host Memory
On-FPGA DIMM
On-FPGA Flash
: SAN
LK_%/”) Ethernet
\“Q« ’J Flash Storage
CAPI SNAP Enabled Card
SNAP Framework built on Power™ CAPI technology Page 7

=)

Power Systems

7. Understand the HLS helloworld example

Let’s consider a simple example of a C code changing the case of a text read from a file and writing back
the result into another file.

Once typed a text in a file t1, the user calls the program with path of input and output files as
arguments. The different steps (red flow) are then typically:

1) Textisread and stored in the server’s memory (source).
2) CPU processes the text and writes back the result to the server memory (destination).
3) Text modified is then written from memory to disk.

Let’s now consider that we decide to “export” this “changing case processing” from the server processor
to an external FPGA card. To keep that simple, we need to implement this switch so that the program
call remains with no great changes (blue flow). To be able to differentiate which of these 2 paths we are
using, we will use a lower case algorithm in the “software” action, so called because it runs on the CPU,
and we will use a upper case algorithm in the “hardware” action so called because it will run on the
FPGA.

Server
.) | snap_helloworld —i /tmp/t1 -0 /tmp/t2 (-mode=cpu) |

HELLO WORLD. | love this ne |=> | snap_helloworld —i /tmp/t1 —o /tmp/t2 -mode=fpga |
experience with SNAP

\'Qh\

g

ﬂ

“Lower case” “Upper case”
processing processing
=> “software” action => “hardware” action Network
. =m e
-
= Ak
=» Change C code to implement:
lhello world. | love this ne HELLO WORLD. | LOVE THIS NEW| H i
[expe,,.emew,.m snap e ERIENGE WITH SMAP - Aswitch to execute action on CPU or on FPGA

= Away to access new resources

Through this simple example, we will discover some of the advantages and strength of SNAP tools to
help exporting the previously CPU executed task.

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 8

===7= M)
Power Systems -z

8. Preliminary Step : configure SNAP environment

You now need to configure SNAP for the card and the action you will want to use.

For a first test, from snap directory, type FUELGCEIET I 111il:4.

= Make sure the terminal window is large enough to allow the opensource configurator to appear.
Otherwise it behaves as if you opened it and closed it suddenly ! you get an unexpected

= Menu uses simple kconfig opensource tool. Thus menus might change depending on the
preselection we apply, it is not always possible to go back and forth without artefacts.
For example selecting N250S/hls_nvme_memcopy/cloud mode will enforce nosim mode.
the make model will then inform you it can build a model in “nosim” mode. Come back and
select “xsim”.

= Do hesitate to use context helps.

This opens a menu window as the following one. Let’s select the Card Type ADKU3 and the Action Type
HLS helloworld with the default vivado xsim simulator.

= Use “space bar” or “return” to select depending if a submenu is present or not.

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are
hotkeys. Pressing <Y= selectes a feature, while <N> will exclude a feature. Press <Esc=<Esc> to exit, <?> for
Help, </> for Search. Legend: [*] feature is selected [] feature is excluded

ction Type (HLS HelloWorld) --->
imulator (xsim) --->
##% ================= Advanced Options: ================= k&%

[] "nable ILA Debug (Definition of $ILA_SETUP_FILE required)
[1 “reate Factory Lmage
[1 “loud build (emabling Partial Reconfiguration)

Then select <Exit> and <Yes> to save the configuration

<Select= < Help = < Save = < Load =

Do you wish to save your new configuration?
(Press <ESC><ESC> to continue Kernel configuration.)

< No =

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page9

F’owerSys'tems &
If everything is set ok, then you should have displayed the SNAP ENVIRONMENT SETUP summary and
the content of snap_env.sh which is the configuration file that we have prepared earlier.

s
mulation setup: Setting
R

You may get some warnings if one of the 3 variables of this snap_env.sh is not set appropriately. It is
recommended to correct it before going further.

ENAP config done

In this example, you typically selected the N250S card with the path PSL_DCP set to ADKU3!

= The selected hls_helloworld example appears as a new variable in snap_env.sh, as it will define
the directory used for simulation and hardware tests.

= Should you need to change anything in the configuration, you would need to make clean_config
in the snap directory to reset those variables. (then copy again the snap_env.sh reference from
your home dir to your snap dir)

= SNAP contains several examples which can be used as references in the same manner.

= We are now using Vivado 2107.4 version

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 10

Power Systems 2

9. Step 1: Run your application with your CPU-executable action

As we use dynamic libraries, we need to prepare our environment, this is easy to do while preparing the
software tools :

cd ~/shap
make software

All the code for the hls_helloworld example can be found in ~snap/actions/hls_helloworld

Let’s start with the application running with the CPU-executable action. Let’s look to the files located in

VAR lIeYetde]a Al cd ~snap/actions/hls_helloworld/sw

You will find 2 C code files : snap_helloworld.c which is what we call the application which will be always
run on the CPU (Power or x86) and action_lowercase.c which is the “software” action.

1) Let’s first compile the code executing the command

The first time you'll get

hdclvel4 sw$ make
[ccl action_lowercase.o
[cC] snap.o
[cC] snap.o

[LD] _ libsnap.o

[AR] libsnap.a

[cc] libsnap.so0.0.1.2-1.3.2-9-g48ea
[cc] snap_helloworld.o

[ccl snap_helloworld

If you already made the file, you’ll will only get :

Makefile README.md snap_helloworld.c

= Note that a “make apps” from the snap dir will create all demo applications (here we just want
to show you just the necessary files)

2) Create a text file (if not done previously) to be processed by the FPGA. Use a mix of lower and
upper case to see the difference when using both actions. Remember “hardware” action will
change all characters in Upper case and the “software” action which will change all characters in
Lower case.

echo " Hello World. | hope you enjoy this wonderful experience using SNAP." > /tmp/t1

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 11

7

Power Systems

3) CONFIG=CPU ./snap_helloworld -i /tmp/t1 -0 /tmp/t2

d -i -0 /

Displaying the 2 files confirms that the “lower case” processing has been correctly done — using the
“software” action code.

You can try the Debug option to see MMIO exchanges between application and action typing:

SNAP_TRACE=0xF SNAP_CONFIG=CPU ./snap_helloworld -i /tmp/t1 -0 /tmp/t2

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 12

:)
Power Systems 2
10. Step 2: run your application with a simulated model of your FPGA-executable action

Now that we have checked that the application works ok with the “software” action, let’s use the
“hardware” action. We'll keep using the snap_helloworld application located in hls_helloworld/sw, but
will now use the “hardware” action located in hls_helloworld/hw.

Optional: This “hardware” action can compiled alone:

igluldcd ~/snap/actions/hls_helloworld/hw JelaloRsYels

or compiled with the whole SNAP design:

- from and type

This compilation is optional since included in the following commands of the flow :

Let’s first build the model of the code so that you can run your application with a simulated model of
your FPGA executable code.

1) From the snap directory , type

[PREPARE PROJECT
[PREPARE PRI C
[SNAP PREPR

[SNAP PREPR ...] done :13
0 art 1 113
do

[CREATE_IPs

s/ADKU3/ current/b_route_d

[CREATE_IPs

t/b_route_design.dcp

L_bcp

FPGACARD
FP

24
on and build date registers
16.4

2) If the build is succesful, then go into ~snap/hardware/sim typing
and start the simulator typing
3) A new window will popup.
Typein it to execute the discovery mode. This step is mandatory in simulation
simulation as well as in real hardware. It allows the SNAP logic to discover all the actions from all
the cards. Should an application request an action, it will thus be assigned to the proper
hardware.

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 13

Power Systems

hdc1u018 $ snap_maint —w
[main] Enter
INFOsConrecting to host hdelu0l8,boebl ingen,de, ibu,con’ port 16384
[snap_version] Enter
SNAP on ADKUS Card, MWHE disabled, O HB SRAM available,
SNAP FPGA Release: w1.2.0 Distance: 1 GIT: 0x126cl722
SNAP FPGA Build (YeD): 2017/11/24 Time (H;H): 19:11
SNAP FPGA CIR Master: 1 My ID: 0
SNAP FPGA Up Time: O sec
[snap_version] Exit
[snap_m_init] Enter
[unlock_action] Enter
Tnuoke Unlock
hls_setup] Enter Offset: 10000
hls_sstup] Exit
unlock_action] Exit found Action: 0x10141008
unlock _action] Enter
urlock_action] Exit Found Action; Ox10141008

0 Hax AT: 1 Found AT 0xLOL4100S s=bfirrgmShor—
0 0x10141008 0w0000CBZL_IBH HLS Hello borld
[snap_n_init] Exit res O

[nain] Exit rc: O
INFO:detach response From from pslse

This shows that the action found is HLS Hello World,...as expected.
Running it a second time will confirm that this discovery step has already been done.

hdc1v013 $ snap_maint —wy

[main] Enter

INFO:Connecting to host ‘hdclv0l8.boeblingen.de,ibm.com’ port 16334
[snap_version] Enter

SNAP on ADKIZ Card, NVHE disabled, O MB SRAM awailable.
SHAP FPGA Releaser v1,2.0 Distance: 1 GIT: Ox126c1722
SHAP FPGA Build (V/M/D: 2017/11/24 Time (H:M): 19:11
SHAP FPGA CIR Haster: 1 Hy ID: O

SHAP FPGA Up Time: O sec

[snap_version] Exit

[snap, u_in -

SIEF FPGA Exploration already dong TNSAT: 1 MAID; 1)

Short | Action Type | Lewel |

0 0x10141008 0x00000021 IBH HLS Hello World

[snap_m_init] Exit rci 0

[main] Exit roi 0

INFO:detach responge from from pslse
hdc1v013 1

4) Then create a text file (if not done previously) to be processed by the FPGA.

echo " Hello World. | hope you enjoy this wonderful experience using SNAP." > /tmp/t1
5) Run the application FE[JR NI IBWitnlJiu R WhinJh®d (Please note the difference

compared to calling software action is: We don’t use SNAP_CONFIG environmental variable.
Actually here implies the default value of SNAP_CONFIG=FPGA)

e 1u018 % anap_helloworld -1 Atmpstl -0 Atmpdt?
reading input data B8 bytes from Ftmpstl
FRRAMETERS:

input: Atmp/tl

output} Atmp/t2

type_ing 0 HOST_DRAM
addr_in: 0000000001 abbO0n
type_out: 0 HOST_DRAM
addr_out: (000000001 abcO0
size_infouty 00000044
INFO3Connecting to host 'hdclv0l®,bosblingen,de,ibm,com’ port 16384
prepare helloworld job of 32 bytes size
writing output data OxlabcO00 68 bytes to ftmp/t2
SUCCESS
SNAP helloworld took 7770436 usec
INFO:detach responze from from pslse
hdc1wi18 £ |

6) Display the 2 files:
hdc1w0l8 $ cat Atmpstl

Hello World, I hope you enjoy this wonderful experience using SHAP,
hdz1w018 $ cat Stmpst2

HELLO WORLD, I HOPE “OU EWJOY THIS WONDERFUL EXPERIEMCE USING SMAP,
hdclwild £y |

This confirms that the “upper case” processing has been correctly done — using the “hardware” code.

You can try other options before exiting

LI VT R TR YV (=Rl Bl SNAP_CONFIG=CPU snap_helloworld -i /tmp/t1 -0 /tmp/t2
e Run the debug mode on FPGA code: NN EREGYO 0GRS (ETo T Lo Tg te IR WA sTo YA s R e WAt s]o V4 Wi

You can nowthe simulator. The poped up terminal window will disappear.

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 14

©

Power Systems \J

11. Step 3: Run your application with your FPGA-excutable action

Now that your application has been succefully executed with the simulated “hardware” action, let’s
generate the “image” of the code which will be put into the FPGA.

1) From the snap directory , type (this takes an hour or so)

[CREATE_IPs

[CREATE_IP:

cd hardware/build/Images/

& 1.
)

919 noSDRAM_ADKU3 28.bin- fw 2017 1124 1919 noSDRAM ADKU3 28.bit fw 2017 1124 1919 noSDRAM ADKU3 28.prm
-
L

You can check subdirectories in /home/opuser/snap/hardware/build/ for more information that Vivado
generates.

2) Copy this image located into ~snap/hardware/build/Images into the Power8 server on which is
plugged the FPGA card

3) Logto your Power8 server

4) Use capi-flash-script to download the binary image into the FPGA (cf. https://github.com/ibm-
capi/capi-utils)

From the directory where you copied your bin file type:

sudo capi-flash-script fw_2017_1124_ 1919 noSDRAM_ADKU3_28.bin

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 15

Power Systems N

6)

i
Enter

Exit:

Exit:

February 21st, 2017

Creating snap

Enter:

Enter:

Enter:

Enter directory snap by typing
and compile the software and all application and action [ELES V] oo

- $ make apps
snap/actions Exit:

: /home/opuser
[cc] |Enter:
[cC]
[LD] libsnap.o
[AR] libsnap
[ccl 1.2-1 Exit
[ccl Enter:
[ccl
[LD] Libsn:
[AR] Libsnapc Exit:
[cC] libsnapc 1.2-1.2.0 |enter:
[cc]

1ap_peek.o
| (I

[ccl

[cc) snap

[cc) snap Exit

[ccl suap Enter: hdl nvme e
[cC] snap [ccl

[ccl snap_maint [ccl

[cc) snap_nvme_init ¢ hdl_nvme e
hls_bfs/ r: hdl_example
[cC) on bfs.o

[cc) snap_b

[ccl snap_bfs

[ccl bfs diff.o

[ccl bfs diff

s _bfs/sw

qnvme. 0

e _qnvme

Exit:
Exit:

earc
nvme

SNAP Framework built on Power™ CAPI technology

Page 16

https://github.com/open-power/snap.git

February 21st, 2017

ER o~
N

Power Systems

7) Execute the command SeJi =BT M E1E4l to add all the paths you will need to PATH

variable.
8) Find which card are available in the Power8 server you are connected to:

snap_find_card -v -A AL

n 18

If you have 2 cards ADKU3, then the 2 cards slots are displayed. Using CO or C1 will help you

chosing the right one.
9) Run the discovery mode to locate on which FPGA card your action has been copied to by typing:

NEPEuETgEA el or RElMuETEWAel depending on the slots reported previously

Only one of these commands should answer you

10) Create a text file to be processed by the FPGA. Use a mix of lower and upper case to see the
difference when using the “hardware” action which will change all characters in Upper case and
the “software” action which will change all characters in Lower case.

echo " Hello World. | hope you enjoy this wonderful experience using SNAP." > /tmp/tl

11) Go to the application you want to run typing

cd /home/snap/actions/hls_helloworld/sw

AR R R oo lecYileYal ./snap_helloworld -i /tmp/t1 -0 /tmp/t2 -CO (or -C1)

SNAP Framework built on Power™ CAPI technology Page 17

5\
p=

This confirms that the “upper case” processing has been correctly done — using the “hardware” action
code.

You can try other options before exiting

LI (Vo Ry TR i [g =R oo e [<H SNAP _CONFIG=CPU snap_helloworld -i /tmp/t1 -0 /tmp/t2
e Run the debug mode on FPGA code: N\EGEREIVAG SO GENETOM oY olals WAL Y YAs R WATs Y YA Wi

12. Conclusion

So far you have been able to run a complete simple example on an FPGA through CAPI SNAP.
You have seen in detail the mecanism that allows submitting a simple task to the FPGA.

You have all the necessary files to undertand how the initially CPU executed task has been submitted to
FPGA hardware.

Once this mecanism is understood, you can experiment further.

You can use some other provided examples to launch a large section of memory copy (hls_memcopy
example) from host memory to the DDR of the FPGA. Then you can make your own FPGA calculation
and get the result back with a second hls_memcopy as a last step.

It should give you a taste of the power of CAPI acceleration using POWER CAPI Technology.

February 21st, 2017 SNAP Framework built on Power™ CAPI technology Page 18

