CAPI SNAP Education Series:

User Guide

. Power Systems

January 31th, 2018

®

CAPI SNAP Education
hls memcopy : howto?
V2.3

SNAP Framework built on Power™ CAPI technology

g |l

3
w
<

a il
g Il

m(:)

Architecture of the SNAP git files =2 0

{ SNAP } Compilation option :

export ACTION_ROOT=$SNAP_ROOT/actions/hls_memcopy
export SDRAM_USED=TRUE (= “Enable SDRAM” must be set in Kconfig menu)

actions

*hls_memcopy

ey Main application program
*snap_memcopy.c < PP Prog

L ti o — “ ” =
RIS SSRGS CPU executed” action program

*hw
«hw_action_memcopy.cpg “‘FPGA executed” action program
*hw_action_memcopy.H e

_— - Specific constants + “data exchanged” structures used by this action (i.e. Action_Release_Level)
*InClude

"action_memcopyN g Specific constants + “data exchanged” structures used by sw action and hw action + application (i.e. Action_Type)
etests
*doc

Regression test used to show how to run this hls_example

hardware
esim < Sim directory used for simulation (inside which we can run ./run_sim to simulate the current action)
*build/Images

< Location of bitstream files used to “burn” FPGA when current action is ready to be used in actual hardware

software

*include
*snap_types.h
. *tools
*snap_maint
*snap_find_card

Common constants + structures (i.e.snap_addr) used by all hls actions and applications

a

a

programs used to “discover” available actions, do basic settings and attach / detach actions

2017, IBM Corporation SNAP Framework built on Power™ CAPI technology 2

o o === (")
Action overview PouarSusigms
Purpose: Transferring data between different resources : En'?é'r\g
* host memory,
* DDR,
* NVMe (soon
() Hz;s;;irr\;er m hls_memcopy “m* NVMe
When to use it: 1
 Understand Basic access to different interfaces
e Memcopy benchmarking

Memory management:
* Application is managing address of Host memory and DDR
* Action is testing if size of transfer is greater than DRAM size (see constants)
e Size of buffer (BRAM) used to copy data can be configured (see constants)

CAPI SNAP Enabled Card

Known limitations:
* HLS requires transfers to be 64 byte aligned and a size of multiples of 64 bytes

* DDR simulation model reads will return wrong values if non 64 bytes words or non initialized
words are read (this is due to the simulation model only)

2017, IBM Corporation SNAP Framework built on Power™ CAPI technology 3

Action usage (1/2)

Power Systems

1
©

Usage: ./snap memcopy [-h] [-v, --verbose] [-V, --version]

-C, --card <cardno> can be
-i, --input <file.bin>

-0, —-output <file.bin>
-A, --type-in <CARD DRAM,
-a, —--addr-in <addr>

-D, --type-out <CARD DRAM,
-d, —--addr-out <addr>

-3, —-size <size>
-t, —--timeout
-X, --verify
-N, --no irqg

(0...3)
input file.
output file.
HOST DRAM, ...>.
address e.g. in CARD RAM.
HOST DRAM, ...>.
address e.g. in CARD RAM.
size of data.
Timeout in sec to wait for done. (10 sec default)
verify result if possible (only CARD DRAM)
Disable IRQs

Example :
| export SNAP TRACE=0x0 |
snap maint -vv

echo move 4kB from Host to DDR@0x0 and back from DDRE@Ox0 to Host
rm t2; dd if=/dev/urandom of=tl bs=1K count=4

[SNAP CONFIG=FPGA| snap memcopy -i tl -D CARD DRAM -d 0xO0

[SNAP CONFIG=FPGA| snap memcopy -o t2 -A CARD DRAM -a 0x0 -s0x1000

diff tl1 t2
if diff tl t2 >/dev/null;then echo "RC=$rc file diff ok";else
echo -e "$t RC=Src file diff is wrong\n$del";exit 1;
fi

2017, IBM Corporation

~

4 Options: (default option in bold)
SNAP TRACE = 0x0 =» no debug trace
SNAP TRACE = 0xF =» full debug trace

SNAP _CONFIG = FPGA =» hardware execution

SNAP Framework built on Power™ CAPI technology

@AP_CONFIG = CPU =» software execution)

Action usage (2/2)

Different cases that can be run Take in account that running on a simulator is
snap maint -vv -CO far more slow than an execution on a FPGA:
=>» moving 512MB with a simulator is a
echo create a 512MB file with random data ..wait.. HUGE challenge May be jUSt trying 4K
rm t2; dd if=/dev/urandom of=tl bs=1M count=512 should be sufficient !

echo READ 512MB from Host - one direction

snap memcopy —-CO -i tl

echo WRITE 512MB to Host - one direction — (tl!=t2 since buffer is 256KB)
snap memcopy —-CO -o t2 -s0x2000 0000

echo READ 512MB from DDR - one direction
snap memcopy —CO0 -s0x2000 0000 —-ACARD DRAM -a0x0
echo WRITE 512MB to DDR - one direction
snap memcopy —CO0 -s0x2000 0000 —-DCARD DRAM -d0x0

Move 4KB from Host to DDR and back to Host and compare
rm t2; dd if=/dev/urandom of=tl bs=1K count=4

snap memcopy —-i tl -D CARD DRAM -d 0x0

snap memcopy -o tZ -A CARD DRAM -a 0x0 -s0x1000

diff tl t2

echo same test using polling instead of IRQ waiting for the result
snap memcopy -o t2Z -A CARD DRAM -a 0x0 -s0x1000 -N

2017, IBM Corporation SNAP Framework built on Power™ CAPI technology 5

)

\

memcopy registers

snap_memcopy [
application [

generated by HLS

@AP (« Action » RTL code \\

DMA
> MMIO @

J

Power Systems

DRAM
on-card

J

Power 8 < |
|
[Job g
queue_workitem Manager
o act/flags seq rete K
?2' priv_data
Action registers
CBO addl’_in =$
< addr_out —
(0]
w

2017, IBM Corporation

SNAP Framework built on Power™ CAPI technology

)

\

Application Code + software action code : what’s in it?

Start

!

Get input arguments to
set action configuration

Read data from
input_file if defined

\ 4

Allocate card

\ 4

Attach action

¢

\ 4

Prepare memcopy:
Addr_set(IN)
Addr_set(OUT)
Job_set

A 4

snap_action_
sync_execute_job

‘-_-1

v

Write data to
output_file if
output_bufferis in
Host memory

\ 4

Print results

v

Detach action

Compare data if Verify
option and type_in and
type_out = Host memory

Detach card

\

| Exit |

Application: snap_memcopy.c

Read data from
input_file if type_in #
Host memory

4

memcpy(dst,src,len)

Y

Write data to
output_file if type_out
Host memory

Power Systems

)
(&

Function calling the software
memcopy processing code
(purpose: application sw code = action code)

~_J

CPU executed action: sw_action_memcopy.c

2017, IBM Corporation

SNAP Framework built on Power™ CAPI technology 7

Hardware action Code : what’s in it?

his_action

process_action

2017, IBM Corporation

Start

Is Act_reg->
Control.flags
set ?

Yes

A 4

Action_Config-> action_type

Exit action sending back :]

Action Config-> release level

Align Input_Address
and Output_Address
with port width

<

Are transfer size

to/from DDR < max ?

Yes

Calculate number of
buffers to transfer

Read action_xfer_size Bytes
from Input_Address +

address_xfer_offset

~O»{"Exitaction]

S

Max transfer size

(CARD_DRAM_SIZE)
€ is defined as a constant

€ Buffer size
(MAX_NB_OF_BYTES_READ)
is defined as a constant

Write action_xfer_size Bytes
from Output_Address +

address xfer offset

Decrement action_xfer_size
ess xfer offset

Increment addr

Set ReturnCode

|——>| Exit action |

FPGA executed Action: hw_action_memcopy.cpp

SNAP Framework built on Power™ CAPI technology

USed during

I
discovery phase only

&y
Power Systems ~

Constants -

Ports

Constants: = SACTION_ROOT = snap/actions/hls_memcopy

Power Systems

Constant name Value Type Definition location Usage
MEMCOPY_ACTION_TYPE 0x10141000 Fixed |SACTION_ROOT/include/action_memcopy.h memecopy ID - list is in snap/ActionTypes.md
RELEASE_LEVEL 0x00000023 Variable [SACTION_ROOT/hw/hw_action_memcopy.H .

release level — user defined
MAX_NB_OF_BYTES_READ (256 * 1024) Variable [SACTION_ROOT/hw/hw_action_memcopy.H |Max size in Bytes of the buffer for read/write access
MAX_NB_OF_WORDS_READ |[(MAX_NB_OF BYTES_READ/BPERDW) | Operation |SACTION_ROOT/hw/hw_action_memcopy.H |Max size in 64B words of the buffer for read/write access
CARD_DRAM_SIZE (1* 1024 *1024 * 1024) Variable [SACTION_ROOT/hw/hw_action_memcopy.H | 2X $ize Of the DDR - prevents from moving data with a
size larger than this value
Ports used:
Ports name Description Enabled
Host memory data bus input Yes
din_gmem Addr : 64bits - Data : 512bits
Host memory data bus output Yes
dout_gmem Addr : 64bits - Data : 512bits
DDR3 - DDR4 data bus in/out Yes
d_ddrmem Addr : 33bits - Data : 512bits
NVMe data bus in/out No (soon)
nvme Addr : 32bits - Data : 32bits

2017, IBM Corporation

SNAP Framework built on Power™ CAPI technology

)

\

A
N

MMIO Registers

Read and Write are considered from the application / software side
act_reg.Control This header is initialized by the SNAP job manager. The action will update the Return code and read the flags value.

CONTROL If the flags value is 0, then action sends only the action_RO_config_reg value and exit the action, otherwise it will process the action
Simu - WR Write@ Read@ 3 | 2 1 0 Typical Write value Typical Read value
0x3C40 0x100 0x180 sequence flags short action type f001_01_00
0x3C41 0x104 0x184 Retc (return code 0x102/0x104) 0 0x102 - 0x104 SUCCESS/FAILURE
0x3C42 0x108 0x188 Private Data cOfebabe
0x3C43 0x10C 0x18C Private Data deadbeef

action_reg.Data

Action specific - user defined - need to stay in 108 Bytes

memcopy_job_t This is the way for application and action to exchange information through this set of registers

Write@ Read@ 3 | 2 | 1 | 0 Typical Write value Typical Read value
0x3C44 0x110 0x190 snap_addr.addr_in (LSB)
0x3C45 0x114 0x194 snap_addr.addr_in (MSB)
0x3C46 0x118 0x198 snap_addr_in.size
0x3C47 0x11C 0x19C snap.addr_in.flags (SRC, DST, ...) | snap.addr_in.type (HOST, DRAM, NVME,..)
0x3C48 0x120 0x1A0 snap_addr.addr_out (LSB)
0x3C49 0x124 O0x1A4 snap_addr.addr_out (MSB)
Ox3C4A 0x128 0x1A8 snap.addr_out.size
0x3C4B 0x12C 0x1AC snap.addr_out.flags (SRC, DST, ...) | snap.addr_out.type (HOST, DRAM, NVME,..)

SACTION_ROOT/hw/hw_action_memcopy.H

typedef struct { N
CONTROL Control; [* 16 bytes */ 4
memcopy_job_t Data; /* 108 bytes */
uint8_t padding[SNAP_HLS_JOBSIZE - sizeof(memcopy_job_t)];

} action_reg;

SSNAP_ROOT/actions/include/hls_snap.H
typedef struct {
shapu8_t sat; // short action type
shapu8_t flags;
snapul6_t seq;
snapu32_t Retc;
shapu64_t Reserved; // Priv_data

SSNAP_ROOT/software/include/snap_types.h

SACTION_ROOT/include/action_memcopy.h } CONTROL; typedj;?é;uctt;dnd?—addr {
typedef struct memcopy_job { uint32 t size;,
struct snap_addr in; /*input data */ N snap_gddrtype_t type; /* DRAM, NVME, ... */
struct snap_addr out; /* output data */ : 4 snap_addrflag_t flags; I* SRC, DST, EXT, ... */
} memcopy_job_t; } snap_addr_t;
2017, IBM Corporation SNAP Framework built on Power™ CAPI technology 10

Performances measurements

Measurements on ADKUS3 card

hls_memcopy / ADKU3 board

1-direction access

256KBytes buffer - 64 access/burst

Read from Host

Write to Host

Read from DDR3

Write to DDR3

Latency to access DDR3 memory:

Bytes transfered] BW (GBps) BW (GBps) BW (GBps) BW (GBps)
512MB memory area transfer 3.337 3.305 10.336 9.584
To run these performances, run the following:
snap find card —-A ADKU3
1
snap maint -vvv -Cl
echo create a 512MB file .wait..

dd if=/dev/urandom of=tl bs=1M count=512

echo READ 512MB from Host
snap memcopy -Cl -i tl

echo WRITE 512MB to Host

snap memcopy —-Cl -o t2 -s0x2000 0000

echo READ 512MB from DDR

snap memcopy —-Cl -s0x2000 0000 —-ACARD DRAM -a0xO0

echo WRITE 512MB to DDR

snap memcopy —-Cl -s0x2000 0000 —-DCARD DRAM -d0xO

2017, IBM Corporation

SNAP Framework built on Power™ CAPI technology

)

\

Power Systems

* Read: from HLS_action request to data in HLS : 232ns
* Write : from HLS_action request to data in DDR : 226ns

11

Performances measurements

Measurements on N250S card

hls_memcopy / N250S board

1-direction access

256KBytes buffer - 64 access/burst

Read from Host

Write to Host

Read from DDR4

Write to DDR4

Latency to access DDR4 memory:

Bytes transfered

BW (GBps)

BW (GBps)

BW (GBps)

BW (GBps)

512MB memory area transfer|

3.166

3.569

14.854

13.524

To run these performances, run the following:

snap find card —-A N250S
0
snap maint —-vvv -CO

echo create a 512MB file .wait..
dd if=/dev/urandom of=tl bs=1M count=512

echo READ 512MB from Host

snap memcopy —-CO -i tl

echo WRITE 512MB to Host
snap memcopy —-CO -o t2 -s0x2000 0000

echo READ 512MB from DDR
snap memcopy —-CO -s0x2000 0000 —-ACARD DRAM -a0xO0

echo WRITE 512MB to DDR

snap memcopy —CO -s0x2000 0000 —-DCARD DRAM -d0xO

2017, IBM Corporation

SNAP Framework built on Power™ CAPI technology

)

\

Power Systems

* Read: from HLS_action request to data in HLS : 184ns
* Write : from HLS_action request to data in DDR : 105ns

12

)
(&

Path of improvements PowerSystams

1. HLS memcpy function waits for the end of the request before starting a new one. Being able to parallelize reads with writes
since both ports are independent would increase performance since the DMA is able to pipeline requests.

2017, IBM Corporation SNAP Framework built on Power™ CAPI technology 13

History of this document and of the action release level PoverSytans

V2.0: initial document

V2.1: new files directory structure applied

V2.2: changes to have one direction access to get real performances

V2.3: simplification of paths thanks to new SNAP features - updates in documentation — Issue#320 circumvention removed

®

2017, IBM Corporation SNAP Framework built on Power™ CAPI technology 14

