

 P a g e 1

SNAP Framework built on Power™ CAPI technology February 21th, 2017

IBM CAPI SNAP framework
Version 1.0

How to debug an issue in SNAP environment.

The Guide describes how to understand the way code is handled and how to debug an issue in SNAP

environment.

 Overview

Let’s try and find all the cases you can have through the different steps of SNAP

We will use the Nimbix cloud environment to illustrate the issues and their resolutions but this can be

easily translated to any other environment.

This document has been built using snap git release tag v1.3.2. It can certainly work also for new

releases.

This document will succesfully go through the following items:

- understand how SNAP architecture helps you debugging the code

- get an overview of main messages (INFO, WARNING, ERRORS,…) generated by SNAP commands

 P a g e 2

SNAP Framework built on Power™ CAPI technology February 21th, 2017

Contents

Overview ... 1

1. Understanding and Debugging a user code... 4

1.1 SNAP architecture concepts overview .. 4

1.2 Debugging the C application with the function, both physically separated. 5

1.3 Adapting the “function to accelerate” to become a “software action” 6

1.4 Adapting the application to SNAP .. 7

1.5 Executing the application with the “software action”: ... 8

1.6 Debugging the application with the “software action”: .. 9

1.7 Adapting the “function to accelerate” to a “hardware action” .. 11

1.8 Debugging the “hardware action” in a standalone mode .. 13

1.9 Debugging the “hardware action” with the application .. 15

1.10 Debugging the “hardware action” with the application in the real FPGA 18

2. Error, warning and information messages generated by commands ... 19

2.1 “make snap_config” command .. 19

2.1.1 message : PSLSE_ROOT path not defined ... 19

2.1.2 INFO message : Cloud user flow is skipping PSL_DCP check... 19

2.1.3 INFO message : PSL_DCP path not defined .. 20

2.1.4 INFO message : outdated design checkpoint .. 20

2.1 Error when executing the application ... 21

2.1.1 Segmentation fault : Program terminated with signal 11, Segmentation fault 21

2.1.2 Bus error : Program terminated with Bus error – no core dumped 22

2.2 “make” command from ~snap/actions/hls_example/hw ... 24

2.2.1 ERROR message : make error while compiling with HLS the hw action 24

2.2.2 ERROR message : error: array is too large : uint8_t padding[108… 24

2.3 “make model” command ... 27

2.3.1 ERROR message : make error while compiling PSLSE model .. 27

2.3.1 ERROR message : Cascaded errors .. 27

2.4 “run_sim” command .. 28

2.4.1 ERROR message : Failed to attach action.. 28

2.4.2 ERROR message : Timer expired ... 28

2.5 “make image” command .. 30

2.5.1 WARNING message : TIMING FAILED, but may be OK for lab use 30

 P a g e 3

SNAP Framework built on Power™ CAPI technology February 21th, 2017

ANNEX 1 : View of the FPGA design .. 32

 P a g e 4

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1. Understanding and Debugging a user code

1.1 SNAP architecture concepts overview

SNAP framework has been built to ease the porting of existing functions. This means that a few steps

have been defined to easily locate and identify a functional issue in the code.

For all the following explanations, we will use the hls_helloworld code as an example

(https://github.com/open-power/snap/tree/master/actions/hls_helloworld)

Remember that by the fact that we add a FPGA and new associated resources all unknown from the

system, SNAP adds 2 things :

- A switch in the application so that it can call the “software action” meaning your function

execueted on CPU or the “hardware action” so called because your function is executed on a

FPGA.

- Reference to the new different resources that are now useable by the application : Card DDR,

Card NVMe, ethernet,…

Files location are as follow:

SNAP

 + actions

 + hls_helloworld

 + sw (cpu)
 - snap_helloworld.c  application

 - action_lowercase.c  software action

 +hw (fpga)
 - action_uppercase.cpp  hardware action

 + include

 - action_changecase.h  common header

https://github.com/open-power/snap/tree/master/actions/hls_helloworld

 P a g e 5

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1.2 Debugging the C application with the function, both physically separated.

The first step is to debug the application calling the “function to accelerate” in a completely standalone

environnement, meaning without any reference to SNAP, CAPI or any hardware stuff.

Use your standard compiler (gcc,..) and debuggers (kdb,…) as usual. Implementing printf and verbosity

management but also a self-tested code can also help in the following steps to ensure changes that will

be applied never breaks the code functionalities.

Command :

 At this stage, you know that your whole C code is functionally correct.

$ gcc helloworld.c

 P a g e 6

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1.3 Adapting the “function to accelerate” to become a “software action”

The “function to accelerate” is going to be moved to a “software action” file which will contain some

additional code so that the application can execute this software action within the SNAP environment.

In the software action file (~snap/actions/hls_helloworld/sw/action_lowercase.c), you will notice that

the additional code implements a switch, coded into the function action:

This function action calls the action_main in which the processing of the data is done. Here is where the

code of your function to accelerate will be.

One more change to do is the way to pass the arguments. We don’t get them from a function call, but

through a unique structure js as follow:

You will notice that assigning the js->in.addr address to src implicitely fills the src array of chars with

the data from system memory. This is important to understand for the next step.

helloworld_job is defined by the user in the common header file since it will be used by both the

hardware and the software action : (~snap/actions/hls_helloworld/include/action_changecase.h).

To be complete, snap_addr type is defined in ~snap/software/include/snap_types.h

/* This is the switch call when software action is called */

/* NO CHANGE TO BE APPLIED BELOW OTHER THAN ADAPTING THE ACTION_TYPE NAME */

static struct snap_sim_action action = {…/…}

/* Main program of the software action */

static int action_main(struct snap_sim_action *action,

 void *job, unsigned int job_len){…/…}

struct helloworld_job *js = (struct helloworld_job *)job;

 // get the parameters from the structure

 len = js->in.size;

 dst = (char *)(unsigned long)js->out.addr;

 src = (char *)(unsigned long)js->in.addr;

/* Data structure used to exchange information between action and application */

/* Size limit is 108 Bytes */

typedef struct helloworld_job {

 struct snap_addr in; /* input data */

 struct snap_addr out; /* offset table */

} helloworld_job_t;

 P a g e 7

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1.4 Adapting the application to SNAP

The application (~snap/actions/hls_helloworld/sw/snap_helloworld.c) calling the “function to

accelerate” (“software” or “hardware” action) uses a template which will successively call as follow:

 P a g e 8

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1.5 Executing the application with the “software action”:

From the ~snap/actions/hls_helloworld/sw/ directory, compile the code by doing

Then create a file /tmp/t1 with a mix of upper and lower cases as follow : “Hello World. I love SNAP”

Then execute:

Check the result that should be in /tmp/t2 as expected  “hello world. i love snap”

$ make

 [CC] snap_helloworld.o

 [CC] snap_helloworld

$ SNAP_CONFIG=CPU ./snap_helloworld -i/tmp/t1 -o/tmp/t2

reading input data 25 bytes from /tmp/t1

PARAMETERS:

 input: /tmp/t1

 output: /tmp/t2

 type_in: 0 HOST_DRAM

 addr_in: 0000000000639000

 type_out: 0 HOST_DRAM

 addr_out: 000000000063a000

 size_in/out: 00000019

 prepare helloworld job of 32 bytes size

writing output data 0x63a000 25 bytes to /tmp/t2

SUCCESS

SNAP helloworld took 5 usec

 P a g e 9

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1.6 Debugging the application with the “software action”:

1) If the execution of the application crashes, then try and generate a core dump, then use gdb to

locate the line causing the crash:

2) Enter some printf to get more information about your values.

3) Enable the verbose mode -vv if any, which can help getting more information from the code

4) Uncommenting __hexdump instructions in the code can help getting the data related to a

memory area.

5) To display the exchanges of the MMIO registers between the application and the software

action, you can set the SNAP_TRACE variable to a value between 0x1 and 0xF:

Code Prefix

0x1 General libsnap trace D

0x2 Enable register read/write trace R

0x4 Enable simulation specific trace S

0x8 Enable action traces A

As an example, sw_mmio_write32(0xf66050, 108, c0febabe) a=0x603720 means that this

is a software emulated (sw_mmio) transfer writing the value c0febabe to address 0x08

(1 before 08 is the offset added by the snap manager to address this action)

Then writing 1 to @0 will start the software action which is shown by the call to action_main as

below:

$ ulimit -c unlimited  enable the core dump generation

$./snap_helloworld  rerun the application to generate the core dump

$ gdb ./snap_helloworld core.xxx  debug the core dump

(gdb) where  locate the line in the application which created

 the segmentation fault

$ SNAP_TRACE=0xF SNAP_CONFIG=CPU ./snap_helloworld -i/tmp/t1 -o/tmp/t2

reading input data 25 bytes from /tmp/t1

…/…

 addr_out: 0000000000f67000

 size_in/out: 00000019

D snap_map_funcs: Mapping action_type 10141008

D find_action: Searching action_type 10141008

D snap_map_funcs: Action found 0x603720.

D sw_attach_action(0xf66050, 10141008 65537 60)

 prepare helloworld job of 32 bytes size

D win_size: 32 wout_size: 0 mmio_in: 12 mmio_out: 8

D snap_action_sync_execute_job: PASS PARAMETERS to Short Action 0 Seq: 0

D sw_mmio_write32(0xf66050, 100, 100) a=0x603720

A mmio_write32(0xf66050, 100, 100)

D sw_mmio_write32(0xf66050, 104, 0) a=0x603720

A mmio_write32(0xf66050, 104, 0)

D sw_mmio_write32(0xf66050, 108, c0febabe) a=0x603720

A mmio_write32(0xf66050, 108, c0febabe)

D sw_mmio_write32(0xf66050, 10c, deadbeef) a=0x603720

…/…

 P a g e 10

SNAP Framework built on Power™ CAPI technology February 21th, 2017

 At this stage, you know that your application works correctly with the software action

…/…

D sw_mmio_write32(0xf66050, 12c, 230000) a=0x603720

A mmio_write32(0xf66050, 12c, 230000)

D snap_action_start: START Action 0x10141008 Flags 0

D sw_mmio_write32(0xf66050, 0, 1) a=0x603720

D starting action!!

A action_main(0x603720, 0x603748, 112) type_in=0 type_out=0 jobsize 32 bytes

A copy 0xf66000 to 0xf67000 25 bytes

D sw_mmio_read32(0xf66050, 0, 4) rc=0

D sw_mmio_read32(0xf66050, 184, 102) rc=0

…/…

 P a g e 11

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1.7 Adapting the “function to accelerate” to a “hardware action”

The “function to accelerate” is going to be moved now to a “hardware action” file which will contain

some specific code so that the application can execute this hardware action within the SNAP

environment. The application code will remain unchanged.

In the hardware action file (~snap/actions/hls_helloworld/hw/action_uppercase.c), the main function

called is hls_action which will define the access to the different ressources that will be used in the

hardware action:

This function calls the process_action in which the processing of the data is done. Here is where the

code of your function to accelerate will be.

As for the software action, the way to pass the arguments is through the unique structure

The implicit read of the memory here needs to be specified since the memory can be the host memory

server (din_gmem) or any other resources from the FPGA such as the card DDR (d_ddrmem), or others:

//--- TOP LEVEL MODULE ---

void hls_action(snap_membus_t *din_gmem,…/…) {

…/…

// Host Memory AXI Interface - CANNOT BE COMMENTED - NO CHANGE BELOW

#pragma HLS INTERFACE m_axi port=din_gmem bundle=host_mem offset=slave depth=512 …

#pragma HLS INTERFACE m_axi port=dout_gmem bundle=host_mem offset=slave depth=512 …

// DDR memory Interface - CAN BE COMMENTED IF UNUSED

//#pragma HLS INTERFACE m_axi port=d_ddrmem bundle=card_mem0 offset=slave depth=512

…

static int process_action(snap_membus_t *din_gmem, snap_membus_t *dout_gmem,

 action_reg *act_reg)

{…/…}

 /* byte address received need to be aligned with port width */

 i_idx = act_reg->Data.in.addr >> ADDR_RIGHT_SHIFT;

 o_idx = act_reg->Data.out.addr >> ADDR_RIGHT_SHIFT;

 size = act_reg->Data.in.size;

 P a g e 12

SNAP Framework built on Power™ CAPI technology February 21th, 2017

The definition of the structure of arguments is common with the software action meaning defined in the

common header file (~snap/actions/hls_helloworld/include/action_changecase.h)

As a reminder, snap_addr type is defined in ~snap/software/include/snap_types.h

 memcpy((char*) text, din_gmem + i_idx, BPERDW);

/* Data structure used to exchange information between action and application */

/* Size limit is 108 Bytes */

typedef struct helloworld_job {

 struct snap_addr in; /* input data */

 struct snap_addr out; /* offset table */

} helloworld_job_t;

 P a g e 13

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1.8 Debugging the “hardware action” in a standalone mode

You may have notices that C files in hardware are all “.cpp” files and not “.c” files. This is to better work

with HLS since more libraries are supported if files are all cpp files. The code can stay standard C code.

It is highly recommended to create a very simple testbench code located at the bottom of the hardware

action which can test the hardware action without the application. There are 2 goals for that:

- Isolate the code to localize an issue quicker

- Use a powerful C debugger within the Vivado HLS GUI

We will see later that this testbench is also extremely useful to optimize performances of the code.

In all examples that are provided in snap github, you will find this code between the #ifdef NO_SYNTH

and #endif lines. For example, for the action_uppercase.cpp file, you will find the following:

Then from the ~snap/actions/hls_helloworld/hw directory, call the Vivado HLS tool

( important : make sure you run almost once a make in this hw directory so that scripts are updated!)

//---

//-- TESTBENCH BELOW IS USED ONLY TO DEBUG THE HARDWARE ACTION WITH HLS TOOL --

//---

#ifdef NO_SYNTH

int main(void)

{

 static snap_membus_t din_gmem[MEMORY_LINES];

 action_reg act_reg;

 action_RO_config_reg Action_Config;

…/…

 act_reg.Data.in.addr = 0;

 act_reg.Data.in.size = 64;

 act_reg.Data.in.type = SNAP_ADDRTYPE_HOST_DRAM;

…/…

 hls_action(din_gmem, dout_gmem, &act_reg, &Action_Config);

 if (act_reg.Control.Retc == SNAP_RETC_FAILURE) {

 fprintf(stderr, " ==> RETURN CODE FAILURE <==\n");

 return 1;

 }

…/…}

#endif

$ vivado_hls

 P a g e 14

SNAP Framework built on Power™ CAPI technology February 21th, 2017

Then select Open Project and select the hw directory and the hlsxxx name

Then run a simulation enabling or not the C debugger. You get in the console the results of your

displays.

Specific to HLS 2017.4 GUI : if the simulation doesn’t want to start (“missing main()… message”), enter

the Project Settings and just press the Ok button and start simulation again.

 

 At this stage, you know that the C code of your hardware action is functionally correct

 P a g e 15

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1.9 Debugging the “hardware action” with the application

Now that the application works ok with the software action, which means that the SNAP switch

implementation works ok, and that the hardware action works ok in a standalone mode, which means

that your C code is functionally correct. This doesn’t confirm yet that the hardware implementation of

your hardware action works ok.

Lets go a step further and test the application with the hardware implementation of the hardware

action. We will need at this stage a model of the Power8, a model of a PSL and model of the hardware

action as if it was executed in the FPGA. Let’s build all that by executing :

from the ~snap directory, call:

Then call the simulator and execute your code

This will open a new window in which you will be able to work as if you were on the real hardware

meaning a real Power8, and a real FPGA containing a real PSL.

Let’s first run the SNAP discovery mode

Then execute the application in default mode (FPGA mode is default)
$ SNAP_CONFIG=FPGA snap_helloworld -i/tmp/t1 -o/tmp/t2 or

$ make model

$ cd hardware/sim

$./run_sim

setting Vivado=2016.4 IES=15.10.s19 SIMULATOR=irun

IES_LIBS found in /afs/bb/proj/fpga/framework/ies_libs/viv2016.4/ies15.10.s19

$ snap_maint -vv

INFO:Connecting to host 'xxx.com' port 16384

SNAP on N250S Card, NVME disabled, 0 MB SRAM available.

SNAP FPGA Release: v1.3.0 Distance: 2 GIT: 0xeffac8c7

…/…

[unlock_action] Exit found Action: 0x10141008

 0 Max AT: 1 Found AT: 0x10141008 --> Assign Short AT: 0

 Short | Action Type | Level |

 ------+--------------+-----------+-----------

 0 0x10141008 0x00000022 IBM HLS Hello World

INFO:detach response from from pslse

$

 P a g e 16

SNAP Framework built on Power™ CAPI technology February 21th, 2017

Don’t take care to the simulation time which doesn’t reflect at all the real time but a simulation time

which is absolutely not relevant.

During the execution of the simulator, you can see in the first window, the PSL commands that flows

to/from the simulator as if they were directly coming from the Power8 server.

As for the execution in pure C mode, you can also switch back to the software action and/or add the

Trace (see 0 and 0)

$ SNAP_CONFIG=CPU ./snap_helloworld -i/tmp/t1 -o/tmp/t2

$ SNAP_TRACE=0xF ./snap_helloworld -i/tmp/t1 -o/tmp/t2

$ SNAP_TRACE=0xF SNAP_CONFIG=CPU ./snap_helloworld -i/tmp/t1 -o/tmp/t2

If the level of detail is not sufficient to debug your issue, you may need to see values of all variables at

the same time.

Depending on the simulator you use , you can get all waveforms. Use the following command typed in a

standard terminal (not the simulator window). This can be done during the simulation execution.

Using xsim (default Xilinx Vivado simulator)

$ snap_helloworld -i/tmp/t1 -o/tmp/t2

reading input data 25 bytes from /tmp/t1

PARAMETERS:

 input: /tmp/t1

 output: /tmp/t2

 type_in: 0 HOST_DRAM

 addr_in: 000000000220a000

 type_out: 0 HOST_DRAM

 addr_out: 000000000220b000

 size_in/out: 00000019

INFO:Connecting to host 'hdclv016.boeblingen.de.ibm.com' port 16384

 prepare helloworld job of 32 bytes size

writing output data 0x220b000 25 bytes to /tmp/t2

SUCCESS

SNAP helloworld took 5137118 usec ( this is a simulation elapsed time)

INFO:detach response from from pslse

$

…/…

257966000: Command Valid: ccom=0x0

258074000: Response tag=0xf1 code=0x00 credits=1

262390000: Command Valid: ccom=0xa00

262402000: Buffer Write tag=0x00

262410000: Buffer Write tag=0x00

262490000: Response tag=0x00 code=0x00 credits=1

263930000: Command Valid: ccom=0xa6b

263942000: Buffer Write tag=0x20

263950000: Buffer Write tag=0x20

264018000: Response tag=0x20 code=0x00 credits=1

…/…

$ xsim –gui xsim/latest/top.wdb  xsim simulator

 P a g e 17

SNAP Framework built on Power™ CAPI technology February 21th, 2017

edit $SNAP_ROOT/hardware/sim/xsaet.tcl to modify waveform properties.

 Using irun (ModelSim Simulator)

edit $SNAP_ROOT/hardware/sim/ncaet.tcl to increase the allowed waveform file size and modify other

waveform properties.

 At this stage, you know that the application works ok with the hardware implementation of

the hardware action

$ simvision ies/latest/capiWave.shm  irun simulator

 P a g e 18

SNAP Framework built on Power™ CAPI technology February 21th, 2017

1.10 Debugging the “hardware action” with the application in the real FPGA

As soon as the application and the hardware action works ok on the simulator, then you can build the

image and move it to the Power8.

Once the image is downloaded into the FPGA, you will be able to run exactly the same commands as the

one you did in simulation, using SNAP_CONFIG=CPU and/or SNAP_TRACE=0xF. You should have exactly

the same behavior than the one you get in simulation. It is reall key to understand that all issues that

you see when executing on a FPGA should be seen in simulation if you run exactly the same testcase.

If you face some functional issues when you are in real hardware, you can also add some probes in the

FPGA to have a view of the values you need. This is what we call inserting Xilinx ILA probes. You will

need to enable the ILA debug selecting it in the make snap_config command

All instructions are then described in the snap hardware README https://github.com/open-

power/snap/blob/master/hardware/README.md#hardware-debug-with-ila-cores

https://github.com/open-power/snap/blob/master/hardware/README.md#hardware-debug-with-ila-cores
https://github.com/open-power/snap/blob/master/hardware/README.md#hardware-debug-with-ila-cores

 P a g e 19

SNAP Framework built on Power™ CAPI technology February 21th, 2017

2. Error, warning and information messages generated by commands

2.1 “make snap_config” command

2.1.1 message : PSLSE_ROOT path not defined

Command :

Message :

Explanation:

You may have run the make snap_config command without having set the PSLSE_ROOT variable

Specific NIMBIX Solution:

Copy the snap_env.sh predefined in the root into ~snap directory

Other environment Solution:

2.1.2 INFO message : Cloud user flow is skipping PSL_DCP check
Command :

Message :

Explanation:

This message appears if you have selected the Cloud build option in the menu. This is recommended if

you want to build an image and use Nimbix capabilities to execute your code on a FPGA

Specific NIMBIX Solution:

Nothing to change if this is what you expect to do

make snap_config

The following environment variables need to get defined:

 PSLSE_ROOT

Please dit snap_env.sh and add the correct values

SNAP config done

cp ../snap.env.sh .

make snap_config

vi snap.env.sh

 > PSLSE_ROOT=~/pslse  use the path to where pslse has been installed

make snap_config

make snap_config

INFO ### Cloud user flow is skipping PSL_DCP check

SNAP config done

 P a g e 20

SNAP Framework built on Power™ CAPI technology February 21th, 2017

2.1.3 INFO message : PSL_DCP path not defined
Command :

Message :

Explanation:

No path has been specified to the PSL_DCP variable in file snap_env.sh.

This means that user can do a simulation but will not be able to build an image (make image will fail).

This setting can be done later when the image generation will be needed.

Specific NIMBIX Solution:

Other environment Solution:

2.1.4 INFO message : outdated design checkpoint
Command :

Message :

Explanation:

The PSL image used by your environment is too old. To prevent issues on the FPGA, we will not allow the

build.

Solution:

Download in your environment (or ask Nimbix administrator if on it) to get the latest CAPI SNAP Design

Kit (b_route_design.dcp) from IBM/OpenPower website

 see https://github.com/open-power/snap/blob/master/README.md#dependencies

make snap_config

INFO ### for image build the environment variable PSL_DCP must point to the CAPI

PSL Check point (b_route_design.dcp)

SNAP config done

cp ../snap.env.sh .

make snap_config

vi snap.env.sh

 > PSL_DCP=~/xxx/b_route_design.dcp  use the path to where file is installed

make snap_config

make snap_config

INFO ### PSL_DCP for N250S is pointing to an outdated design checkpoint, image

built will not be allowed

https://github.com/open-power/snap/blob/master/README.md#dependencies

 P a g e 21

SNAP Framework built on Power™ CAPI technology February 21th, 2017

2.1 Error when executing the application

2.1.1 Segmentation fault : Program terminated with signal 11, Segmentation fault
Command :

Message :

Explanation:

A segmentation fault may be due to a memory allocation issue. This means that you have written to

some area you are not authorized to. It’s often because you have allocated an aread with a certain size

and wrote beyond this size.

Solution:

To correct this issue, You first need to have a core dump file generated by the application. If this was not

generated, then execute the following and re-run the application. A file core.xxx will be generated.

Install the gdb debugger tool, if not done yet  sudo apt-get install gdb

Use gdb debugger tool to locate the line causing the crash:

This will give you a backtrace with all the hierarchy of the calls and will locate precisely the line that has

generated the segmentation fault.

The line #0 is the cause (often a library or system call), which was called by #1 which can gives you the

precise location of the issue. Reading the calls history to the main() may help you understanding the

whole context in which this call was done.

(This is trace below was generated on a different example than snap_helloworld)

./snap_helloworld -i/tmp/t1 -o/tmp/t2

Core was generated by ‘./snap_helloworld -i/tmp/t1 -o/tmp/t2’.

program terminated with signal 11, Segmentation fault.

#0 0x00002baa8b33c484 in __strcpy_ssse3 (à from /lib64/libc.so.6

$ ulimit -c unlimited  enable the core dump generation

$./snap_helloworld -i/tmp/t1 -o/tmp/t2  rerun the application

$ gdb ./snap_helloworld core.xxx  debug the core dump

(gdb) where  locate the line in the application which

 created the segmentation fault

 P a g e 22

SNAP Framework built on Power™ CAPI technology February 21th, 2017

2.1.2 Bus error : Program terminated with Bus error – no core dumped
Command :

Message :

Explanation:

An error has occurred but did not generate a core dump.

Solution:

You first need to have a core dump file generated by the application.

New Message :

Use gdb debugger tool to locate the line causing the crash:

./snap_hashjoin -C1 -vv -t2500

…/…

 { .name = "Glory", .animal = "Gepard", .age=83 } /* 10. */ }; /* table3_idx=11

ReturnCode: 102

HashJoin took 1121 usec

Bus error

$

$ ulimit -c unlimited  enable the core dump generation

$./snap_hashjoin -C1 -vv -t2500  rerun the application

…/…

 { .name = "Glory", .animal = "Gepard", .age=83 } /* 10. */ }; /* table3_idx=11

ReturnCode: 102

HashJoin took 1121 usec

Bus error (core dumped)

$ ls

action_hashjoin.c core Makefile README.md …..

$ gdb ./snap_helloworld core.xxx  debug the core dump

(gdb) where  locate the line in the application which

 created the segmentation fault

 P a g e 23

SNAP Framework built on Power™ CAPI technology February 21th, 2017

You have here the hierachy of the calls which droves to your issue

Main > snap_detach_action > hw_detach_action > hw_snap_mmio_read32 > cxl_mmio_read32

Looking into the code at line 374 of snap_hash_join.c file, you can locate which call is bad.

Here you can easily see the reason of the issue. The snap_detach_action has already been done on line

367 so that the snap_detach_action of line 374 is not expected and generates an issue.

Removing one of them get rid of the issue.

Core was generated by `./snap_hashjoin -C1 -vv -t2500 '.

Program terminated with signal SIGBUS, Bus error.

#0 0x00003fff92a3875c in raise (sig=<optimized out>) at

../sysdeps/unix/sysv/linux/pt-raise.c:3535 ../sysdeps/unix/sysv/linux/pt-

raise.c: No such file or directory.

(gdb) where

#0 0x00003fff92a3875c in raise (sig=<optimized out>) at

../sysdeps/unix/sysv/linux/pt-raise.c:35

#1 0x00003fff928150d8 in cxl_mmio_read32 () from /usr/lib/powerpc64le-linux-

gnu/libcxl.so.1

#2 0x00003fff92a8380c in hw_snap_mmio_read32 (card=0x1003dcb0010, offset=0,

data=<optimized out>) at snap.c:272

#3 0x00003fff92a83984 in hw_detach_action (action=0x1003dcb0010) at snap.c:576

#4 0x00003fff92a8424c in snap_detach_action (action=0x1003dcb0010) at snap.c:680

#5 0x0000000010001960 in main (argc=<optimized out>, argv=<optimized out>) at

snap_hashjoin.c:374

(gdb)

365 t2_entries -= t2_tocopy;

366 }

367 snap_detach_action((void*)action);

368 gettimeofday(&etime, NULL);

369

370 fprintf(stderr, "ReturnCode: %x\n"

371 "HashJoin took %lld usec\n", cjob.retc,

372 (long long)timediff_usec(&etime, &stime));

373

374 snap_detach_action(action);

375 snap_card_free(card);

376 exit(exit_code);

 P a g e 24

SNAP Framework built on Power™ CAPI technology February 21th, 2017

2.2 “make” command from ~snap/actions/hls_example/hw

2.2.1 ERROR message : make error while compiling with HLS the hw action
Command :

Message :

Explanation:

To ensure that your MMIO mapping will be correct and in sync with the software, the MMIO structure

action_reg is restricted to 108 bytes at maximum. A script in the hls.mk controls this and will stop the

HLS compilation if this rule is forced.

Solution:

To correct this issue, please check that the structure Data defined in your_action_job_t is defined

correctly. For example in helloworld, here is where it is defined

$ACTION_ROOT/hw/action_uppercase.H
typedef struct {

 CONTROL Control; /* 16 bytes */

 helloworld_job_t Data; /* up to 108 bytes */

 uint8_t padding[SNAP_HLS_JOBSIZE - sizeof(helloworld_job_t)];

} action_reg;

$ACTION_ROOT/include/action_changecase.h
typedef struct helloworld_job {

 struct snap_addr in; /* input data – 16B */

 struct snap_addr out; /* offset table – 16B*/

} helloworld_job_t;

2.2.2 ERROR message : error: array is too large : uint8_t padding[108…

Command :

make

Checking for reserved MMIO area during HLS synthesis ...

/home/…/snap//actions/hls.mk:69: recipe for target 'check' failed

cd ../include && vi action_changecase.h

cd ../hw && make

make

 P a g e 25

SNAP Framework built on Power™ CAPI technology February 21th, 2017

Message :

Explanation:

The definition of the structure of data exchanged between the application and the action is defined on

~snap/actions/hls_helloworld/hw/action_uppercase.H

helloworld_job_t is constrained to a structure up to 108 Bytes. If it is smaller or equal to 108 Bytes, then

an automatic padding will be done. If it is larger, then a script will stop the compilation so that we don’t

go over this constraint.

The definition of the structure of arguments is common with the software action meaning defined in the

common header file (~snap/actions/hls_helloworld/include/action_changecase.h)

As a reminder, snap_addr type is a 16 Bytes structure defined in ~snap/software/include/snap_types.h.

This constraint is due to the way Vivado HLS handles registers and the way we have implemented them.

As we need some fixed address for read and write thes registers for the software, we had to constraint

this size so that address are always at the same location.

In file included from action_uppercase.cpp:27:

./action_uppercase.H:39:18: error: array is too large (18446744073709551564 elements)

 uint8_t padding[108 - sizeof(helloworld_job_t)];

 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 error generated.

ERROR: [HLS 200-70] Compilation errors found:

Pragma processor failed: In file included from action_uppercase.cpp:1:

In file included from action_uppercase.cpp:27:

./action_uppercase.H:39:18: error: array is too large (18446744073709551564 elements)

 uint8_t padding[108 - sizeof(helloworld_job_t)];

 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 error generated.

// This is generic. Just adapt names for a new action

// CONTROL is defined and handled by SNAP

// helloworld_job_t is user defined in hls_helloworld/include/action_change_case.h

typedef struct {

 CONTROL Control; /* 16 bytes */

 helloworld_job_t Data; /* up to 108 bytes */

 uint8_t padding[SNAP_HLS_JOBSIZE - sizeof(helloworld_job_t)];

} action_reg;

/* Data structure used to exchange information between action and application */

/* Size limit is 108 Bytes */

typedef struct helloworld_job {

 struct snap_addr in; /* input data */

 struct snap_addr out; /* offset table */

} helloworld_job_t;

typedef struct snap_addr {

 uint64_t addr;

 uint32_t size;

 snap_addrtype_t type; /* DRAM, NVME, ... */

 snap_addrflag_t flags; /* SRC, DST, EXT, ... */

} snap_addr_t; /* 16 Bytes */

 P a g e 26

SNAP Framework built on Power™ CAPI technology February 21th, 2017

Solution:

To correct this issue, reduce the size of the helloworld_job_t so that it is below or equal to 108 Bytes.

If user needs more than 108 Bytes to exchange data, then he should create a zone in server memory

that can contain as much as whe wants and share it with the action.

 P a g e 27

SNAP Framework built on Power™ CAPI technology February 21th, 2017

2.3 “make model” command

2.3.1 ERROR message : make error while compiling PSLSE model
Command :

Message :

Looking to the first lines of /home/nimbix/snap/hardware/logs/compile_pslse.log
checking PSLSE_ROOT…..: line24: version: command not found

WARNING: PSLSE version= should be v3.1

Explanation:

Dependencies requests stable releases. PSLSE release should be v3.1 so that SNAP can work with it.

Nimbix builds it by default

NIMBIX Solution:

2.3.1 ERROR message : Cascaded errors
Command :

Message :

Explanation:

Error is related to a make in sub-directories.

Solution:

Re-run the make in the hw directory to get more details (This example is related to hls_helloworld)

make model

[COMPILE PSLSE ……] start xx:xx:xx Thu Jan xx xxxx

 Error: please look into

/home/nimbix/snap/hardware/logs/compile_pslse.log

make[2]: *** [pslse] Error 255

make[1]: *** [model] Error 2

make: *** [model] Error 1

cd ../pslse && git checkout v3.1

cd ../snap && make model

make model

[CONFIG ACTION HW....] start 10:33:19 Thu Feb 01 2018

Calling make -C /afs/xxxxx/snap/actions/hls_helloworld hw

make[5]: *** [hlsUpperCase_xcku060-ffva1156-2-e/helloworld/syn] Error 1

make[4]: *** [hw] Error 1

make[3]: *** [action_hw] Error 2

make[2]: *** [.hw_project_done] Error 2

make[1]: *** [model] Error 2

make: *** [model] Error 1

 P a g e 28

SNAP Framework built on Power™ CAPI technology February 21th, 2017

2.4 “run_sim” command

2.4.1 ERROR message : Failed to attach action
Command :

Message :

Explanation:

SNAP is not able to attach the action. It may be due to a lack of information of the system. It seems as if

you didn’t run the snap_maint command prior to execute your test

Solution:

2.4.2 ERROR message : Timer expired
Command :

Message :

./run_sim

$ snap_memcopy -i t1 (or any simulation executed)

$ snap_memcopy -i t1

reading input data 4096 bytes from t1

PARAMETERS:

 input: t1

 output: unknown

 type_in: 0 HOST_DRAM

 addr_in: 000000000254c000

 type_out: ffff UNUSED

 addr_out: 0000000000000000

 size_in/out: 00001000

 mode: 00000000

INFO:Connecting to host 'hdclv016.boeblingen.de.ibm.com' port 16384

err: failed to attach action 0: No such device

INFO:detach response from from pslse

$ snap_maint -v

$ snap_memcopy -i t1 -t 200

./run_sim

$ snap_maint -v

$ snap_memcopy -i t1 (or any simulation executed)

$ snap_memcopy -i t1

…/…

Action is running got end of exec. Time

err: job execution -6: Timer expired!

INFO:detach response from from pslse

 P a g e 29

SNAP Framework built on Power™ CAPI technology February 21th, 2017

Explanation:

Depending on the simulator used and the test you are doing, simulation needs much more time than a

standard test. Default time is set to 10 secs. Extend the timeout to a much greater value with the -t

argument.

Solution 1:

Solution 2:

If this is not sufficient, then try and use the SNAP_TRACE=0xF option to understand if the freeze is

located into the action (after the snap_action_sync_execute_job) or elsewhere.

Then use the waveforms to debug and see which function is called (cf 0). Good to know, all HLS

functions are active when their ap_start signal is active.

$ snap_memcopy -i t1 -t 200

…/…

R hw_snap_mmio_read32(0x1ed1030, f000, 1) 0

D snap_action_sync_execute_job: rc=0

err: job execution -6: Timer expired!

D snap_detach_action Enter

D hw_detach_action Enter Action: 0x216 Base: f000 timeout: 60 sec Seq: 0xf002

…/…

 P a g e 30

SNAP Framework built on Power™ CAPI technology February 21th, 2017

2.5 “make image” command

2.5.1 WARNING message : TIMING FAILED, but may be OK for lab use

Command :

Message :

Explanation:

The design you have asked to build cannot be correctly timed by the Vivado tool. This means that the

hardware logic used to build your code cannot be connected in a correct manner so that all signals are in

synchronous mode. This can be due to multiple causes.

The threshold authorizing or not the use of the image is defined as the TIMING_LABLIMIT variable in

~snap/hardware/setup/snap_build.tcl and follows the rule defined as follow:

- Image will be deleted if : Timing (TNS) < -250ps

- Image will be kept for lab tests if : -250ps < Timing (TNS) < 0

- Image will be ok for production if : Timing(TNS) > 0

It is recommended to not use an image with a negative TNS value since random behavior of your code

can be faced in extreme conditions of temperature.

Solution:

1. If the negative timing is very little (<100ps) : run once again the same image build

2. Check that the FPGA is not too full :

~snap/hardware/build/Reports/utilization_route_design.rpt

 look for Util% and check that all values are < 75%

3. Change the way the code is written

 Identify where the timing problem is ~snap/hardware/build/Reports/timing_summary.rpt

 look for “VIOLATED” word to identify the issue and identify the name of the failing path

make image

[BUILD IMAGE.........] start Mon Jun 5 16:17:26 CEST 2017

 open framework project 16:17:37

 start synthesis with directive: Default 16:17:42

 start locking PSL 16:34:11

 start opt_design with directive: Explore 16:41:58

 start place_design with directive: Explore 16:52:05

 start phys_opt_design with directive: Explore 17:13:11

 start route_design with directive: Explore 17:23:38

 generating reports 17:43:29

 Timing (TNS) -6 ps

 WARNING: TIMING FAILED, but may be OK for lab use

 generating bitstreams 17:47:36

 removing temp files 17:50:55

[BUILD IMAGE.........] done Mon Jun 5 17:51:06 CEST 2017

 P a g e 31

SNAP Framework built on Power™ CAPI technology February 21th, 2017

In the vivado_hls.log file located in the directory of your HLS example, identify the

function that contains this element and modify the code so that synthesis will be

done differently.

4. (not recommended) for very specific design, you can also change the synthesis

directive strategy in ~snap/hardware/setup/run_build.tcl

 P a g e 32

SNAP Framework built on Power™ CAPI technology February 21th, 2017

ANNEX 1 : View of the FPGA design

If you want to see the “inside” of the image built for the FPGA, you can choose the dcp (design

checkpoint) file corresponding to the different stages of building the image.

In non cloud mode, meaning when not using Partial reconfiguration flow, these files can be found in

~snap/hardware/build/Checkpoints.

The order of the build is the following:

- synth_design.dcp  logic is “synthesized” – converted to logic resources

- opt_design.dcp  logic ressources are optimized

- place_design.dcp  logic is placed but not routed yet

- phys_opt_design.dcp  logic placement has been optimized

- route_design.dcp  design placed and routed (the final view)

Command :

Nimbix specific: On Nimbix, the way the SNAP+PSL are connected to the user design is done differently

for security reasons. Only some checkpoints can be seen, and not the final routed chip. However some

files can be found in DCP_ROOT defined as /data/snap.xxxxx_xxx

- user_action_synth.dcp  contains only user design (before place/route level)

- snap_static_region_bb.dcp  contains everything but user design (after place/route level)

Command :

cd ~snap/hardware/build/Checkpoints

vivado route_design.dcp

cd /data/snap.xxxx_xxx

vivado snap_static_region_bb.dcp

